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ETF Trading and the Bifurcation of Liquidity

Abstract

Passively managed exchange traded funds (ETFs) are a financial technology that has risen

dramatically in the last two decades. Over the same period liquid stocks have become more

liquid while illiquid stocks have not experienced a similar improvement. We model investors

shifting from trading individual stocks to trading ETFs and generate predictions consistent

with the documented bifurcation in liquidity. Using daily ETF creation and redemption

activity, we provide empirical evidence that closely matches the model’s predictions. The

results show that the effects of ETFs on underlying asset markets are driven by their index

implementation strategy.
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In recent years the structure of U.S. equity trading has dramatically changed. In 1998 there

was $6.8 billion of assets under management (AUM) in exchange traded funds (ETFs); by

2018 there was $3.4 trillion of AUM in ETFs. At the same time ETFs went from less than

2% to over 31% of total U.S. equity trading volume.1 During this same period the U.S. stock

market has become more liquid on average (Angel, Harris, & Spatt, 2015). However, the

improvement in liquidity has not been uniform. Liquid stocks have become more liquid while

illiquid stocks have not experienced similar gains.2 Figure 1 shows the evolution of liquidity

in U.S. equities since 2000. In this paper we examine whether the rise of ETF trading can

help explain recent trends in liquidity in U.S. equity markets.

Insert Figure 1 About Here

We develop a model that predicts that ETF trading has a differential, bifurcating effect

on asset liquidity. The key insight is that ETFs that passively track an index can, and

frequently do, deviate from the weights of the index they track.3 The model predicts that

ETFs will systematically underweight or omit index components that are less liquid ex ante.

Thus, trading activity is not simply substituted one for one by the ETF but is tilted towards

the stocks the ETF chooses to sample. Consequently, there is a bifurcation in asset liquidity

as noise trading flows preferentially into more liquid index assets.

Empirically, we find that the model’s predictions are borne out in the data. ETFs are

more likely to omit less liquid index stocks from their holdings, and ETF primary flows

(i.e. share creations and redemptions) have a differential effect on stock liquidity. As the

magnitude of ETF primary flows increases – in either direction – ex ante liquid stocks

1All numbers are calculated from the CRSP monthly security files. The ETF numbers are for all entries
with shrcd = 73; total equity trading volume also includes all common stocks (shrcd = 10, 11).

2Hendershott, Jones, and Menkveld (2011); Jones (2013); Haslag and Ringgenberg (2016).
3The aspect of index replication that we focus on is distinct from the observation of Easley, Michayluk,

O’Hara, and Putnins (2019) that many ETFs diverge from the value-weighted market portfolio.
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become more liquid, while illiquid stocks become less liquid. This effect is separate from the

previously documented effects of market fragmentation and algorithmic trading.

While straightforward in principle, replicating a target index involves tradeoffs in its

implementation. Models of index investing usually assume that index funds simply replicate

the weights of their target index. In practice ETFs have considerable discretion in defining

their creation/redemption baskets (Lettau & Madhavan, 2018a) and many ETFs’ holdings

diverge from the weights of their target index. Six of the ten largest ETFs as of 2018 state in

their prospectus that they statistically replicate their target index by investing in a basket

of representative securities.4

We model the fundamental tradeoff faced by a passive fund: To simultaneously minimize

expected tracking error and expected transactions costs. The model applies to both ETF

providers (that set the creation and redemption basket for authorized participants) and

traditional open-ended index funds (that rebalance their portfolio after inflows and outflows).

For fund holdings the model predicts that the optimal weighting of index assets is driven by

their transaction costs and their correlation with other index assets. Assets that are more

expensive to trade and less correlated with the index are more likely to be underweighted or

omitted. We empirically test these predictions and find that they are borne out in the fund

holdings data.

We next turn to the effects of ETF trading on underlying asset markets. The main

prediction of the model is that ETF trading activity due to primary flows (i.e. the creation

4One example is the Vanguard Total Stock Market ETF (VTI), the third largest ETF by assets as of
December 2018. The fund’s prospectus states, “The Fund invests by sampling the Index, meaning that it
holds a broadly diversified collection of securities that, in the aggregate, approximates the full Index in terms
of key characteristics.” Sampling or “optimized” index replication is not only popular with funds that track
relatively illiquid indexes, but is also used by ETFs that track more liquid indexes. For example, the second
largest ETF as of 2018, the iShares Core S&P 500 ETF (IVV), states in its prospectus that BlackRock “uses
a representative index sampling strategy to manage the Fund.”
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and redemption of ETF shares in exchange for the posted basket of index assets) amplifies

preexisting differences in liquidity. Thus, the ETF’s optimal implementation strategy moves

noise trading out of illiquid index assets and into liquid index assets. We test these predictions

and find support for them in the stock-level daily data. On days with more ETF primary

flows – in either direction – we find that liquidity is higher for index stocks that were more

liquid ex ante and lower for index stocks that were illiquid ex ante. Depending on the measure

of primary flow, we found a 12% to 16% increase per annum associated with primary flow

in the liquidity gap between the most and least liquid stocks.

These results are potentially confounded by other market forces that drive both ETF flows

and asset liquidity. However, a unique prediction of the model is that the effects of ETF

flows on index asset liquidity are determined by the fund’s implementation strategy. Thus,

the effects are different for ETFs that follow a statistically-sampling strategy compared to

ETFs that follow a fully-replicating strategy.5 Comparing the effects of samplers versus full

replicators breaks the potential simultaneity between ETF flows and asset liquidity. Using

a matched sample of ETFs, we find that the bifurcation in stock liquidity is only driven by

primary flows in sampling ETFs.

Other factors such as the arrival of market-moving news could also drive ETF primary

flows and asset liquidity. We examine this possibility using two different approaches. First,

we control directly for daily market movements. Second, in an additional analysis we restrict

the sample to trading days when no market-moving news arrived. In both cases the differ-

ential effects of ETF activity on asset liquidity are unchanged or even larger, inconsistent

with market-wide news explaining the results.

5Four of the ten largest ETFs as of 2018 state in their prospectus that they follow a fully replicating
strategy. Two examples are SPY and QQQ, which are the State Street S&P 500 ETF and the Invesco
Nasdaq 100 ETF, respectively.

3

 Electronic copy available at: https://ssrn.com/abstract=3510359 



Finally, we consider two additional alternative explanations for differential liquidity ef-

fects in recent years: Market fragmentation and algorithmic trading. Regulation National

Market System (Reg NMS) was established in 2005 and had significant effects on quoted

spreads, market fragmentation, and market quality that differ by stock market capitaliza-

tion (Haslag & Ringgenberg, 2016). Algorithmic and high frequency trading have risen

significantly for a segment of the stock market (Weller, 2017). We control for these ef-

fects directly, and find that stock-by-day measures of market fragmentation and algorithmic

trading activity do not explain the differential effects of ETF activity on asset liquidity.

This paper makes contributions to both theoretical and empirical research on passive

investing. Theoretical studies of passive investing assume that passive funds replicate the

weights of their benchmark index pro rata. We demonstrate that models of the impact

of passive investing on asset prices can be made richer and more realistic by taking into

account the implementation strategy of passive funds. Moreover, empirical studies of passive

investing often implicitly take full replication as given by using index assignment to study

the treatment effects of index investing. We show that the institutional details of how index

funds interact with the market means that full replication is not a given and therefore the

intensity of index investing on specific underlying assets may be mismeasured.

This paper relates to two main strands of the literature. First, a large literature has

investigated the growth of passive and ETF investing and its effects on individual stocks.

Greenwood (2007) finds that a higher index weight leads a stock to co-move more with the

index and less with stocks that are not in the index. Da and Shive (2018) attribute increased

co-movement to ETF arbitrage activity. Ben-David, Franzoni, and Moussawi (2018) find that

increased ETF ownership leads to higher stock volatility, due to arbitrage trading between

ETFs’ market price and net asset value (NAV). Israeli, Lee, and Sridharan (2017) find that
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increased ETF ownership leads to lower price efficiency, higher return synchronicity, and

lower analyst coverage of the securities in the underlying basket. Evans, Moussawi, Pagano,

and Sedunov (2019) find that increased ETF ownership widens the intraday bid-ask spreads

of the underlying stocks. Sağlam, Tuzun, and Wermers (2019) find that increased ETF

ownership makes underlying index stocks more liquid. Agarwal, Hanouna, Moussawi, and

Stahel (2018) find that increased ETF ownership increases the commonality in liquidity of

the underlying stocks.

We add to this literature by focusing on the implications of ETFs’ index implementation

strategy. We show that many ETFs sample a subset of liquid index assets, and underweight

or omit less liquid index assets, and that this strategy amplifies preexisting differences in

asset liquidity: Liquid assets become more liquid while illiquid assets become less liquid. We

examine the create/redeem mechanism as a channel through which ETFs affect the liquidity

of the underlying assets in the index.

Second, this paper relates to theoretical work on the impact of ETFs on underlying asset

markets. Carpenter (2000) and Basak, Pavlova, and Shapiro (2007) show that fund flows

tilt the portfolio toward stock that belong to the benchmark because of fund managers’

risk aversion. Malamud (2016) constructs a general equilibrium model in which ETF cre-

ation/redemption serves as a shock propagation mechanism; Pan and Zeng (2019) construct

a model in which a liquid ETF tracks a single illiquid asset, and they analyze the effects

of authorized participants’ market making activity on the asset’s liquidity. These models

all assume the ETF replicates the underlying index pro rata. By contrast, we construct a

model of optimal index replication and show how these effects depend crucially on ETFs’

index implementation strategy. We characterize the optimal differences between the basket

and the index and the resulting differential effects on asset markets.
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I. Model

An exchange-traded fund (ETF) is a fund that tracks an index of underlying securities. ETFs

are in many ways similar to open-ended mutual funds except that ETF shares are listed on

an exchange and traded throughout the day. An ETF tracks its underlying index because

of the arbitrage activity of authorized participants (APs), which are usually large market

making firms. An AP has access to the creation and redemption mechanism, which allows

them to exchange ETF shares for the basket of underlying securities. If the ETF’s shares

trade sufficiently above the fund’s net asset value, which the ETF provider publishes in real

time, the AP sells ETF shares and buys the underlying basket of securities and vice versa.

Authorized participants are thus de facto market makers for the ETF, in that they provide

a liquid two-sided market for its shares and facilitate secondary market trading (Lettau &

Madhavan, 2018a; Evans et al., 2019). The net creation and redemption of ETF shares,

through which investor dollars move in and out of the ETF provider, is referred to as ETF

primary flow.

We construct a simple one-period model that captures the fundamental tradeoff faced by

any passive index fund: To simultaneously minimize expected tracking error and expected

transaction costs. The model is written from the point of view of an ETF provider; we show

in Appendix B that the same decision problem and solution applies to traditional open-ended

funds as well.

A. Setup

There are N assets in the market with a vector of prices p, and one-period excess returns r̃

which are normally distributed with expectation 0 and covariance matrix Σ.

6
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There are three types of agents: ETF providers, authorized participants, and investors.

We consider the market for ETFs that track a specified index such as the S&P 500, the

Russell 2000, or the CRSP value-weighted U.S. market index. The index is a vector of

weights v that add to 1 and are exogenous and fixed.

An ETF provider enters the market by publishing a basket, which is a vector of weights

w that add to 1. She agrees to create or redeem shares of the ETF in exchange for that

basket of individual assets.6 The net asset value (NAV) of one ETF share is NAV = w′p.

The provider incurs administrative costs and collects a management fee. There is free entry,

so in equilibrium ETF providers’ fees equal their costs.

The ETF provider nominates one or more authorized participants (APs) who have access

to the creation and redemption mechanism. The AP is risk neutral and makes the market for

ETF shares by posting a bid price and an ask price around the NAV. The quotes are executed

against by order flows from index investors. At the end of the period the AP nets the buy

and sell orders that arrived within the period. She then closes out her netted position by

trading in the individual index assets in the basket and making basket-ETF exchange with

the provider.

It follows that the bid and offer prices relative to the NAV are pinned down by the

transaction costs in the individual asset markets. The AP’s expected profit from posting the

offer NAV + b and being lifted is:

E[(NAV + b)− (w′p + C(w))] = b− E[C(w)],

6Some ETF providers also allow the authorized participants to create or redeem ETF shares in exchange
for cash. After netting the daily primary flow from its authorized participants, the provider may transact in
derivatives or the underlying asset markets to zero out its residual position. As long as the ETF provider
faces nonzero transaction costs of doing so, the model is the same.
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where b is the spread and E[C(w)] is the expected transaction cost incurred by the netted

order flow. As long as the provider nominates at least two authorized participants, if one

posts an offer that is above the zero-profit bound, the other will undercut them. That is,

competition between authorized participants is Bertrand. (Lettau and Madhavan (2018b)

cite that a sample of large ETFs had an average of 38 authorized participants apiece). Thus,

the bid and offer prices that investors face to trade the ETF shares are NAV± E[C(w)].

In the competition among ETFs, all investors prefer an ETF that has a lower bid/ask

spread and a lower tracking error. Thus, in equilibrium the ETF that captures the market

is the one that minimizes

U = E[C(w)] + λ(w − v)′Σ(w − v), (1)

where λ is the shadow price that investors attach to a higher tracking error (term 2) relative

to a higher bid/ask spread (term 1).7

B. Fund Weights

The first order condition for the optimal weight of the fund in asset i is:

0 =
∂E[C(w)]

∂wi
+ 2λ

∑
j

(wj − vj)σiσjρij

Cov(r̃i, r̃ETF − r̃Index)
∂E[C(w)]/∂wi

= −1/2λ.

7We assume that all investors have the same preference λ. Relaxing this assumption would result in a
frontier of ETFs that express different tradeoffs between tracking error and transaction costs and cater to
investors with different preferences. In practice, the multiplicity of funds tracking the same index seems to
be driven by investor search costs and not by different investor preferences (Hortaçsu & Syverson, 2004).
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That is, the optimality condition for each asset is that the marginal increase in trading

costs equals the marginal decrease in the expected tracking error, which is a product of the

covariance of r̃i with the other index assets.

To solve for w explicitly, we specify the trading cost as linear and additively separable

8 and assume noise index investors have independently normally distributed exogenous flow

f̃ ∼ N(0, σ2
f ):

E[C(w)] = 2E
[∣∣∣f̃ ∣∣∣]∑

i

ciwi = 2

√
2

π

∑
i

ciwi,

where ci measures the the trading cost of stock i.

It follows that:

w∗i =

(
vi −

ci
λETFσ2

i

)
+
∑
j 6=i

(vj − wj)βj,i, (2)

where λETF =
√
π/2. Intuitively, the first term says that in general, index holdings are

underweighted relative to their index weight vi. The optimal weight balances transaction

costs against the direct contribution to tracking error (hence, ci over λσ2
i ). The second term

captures the indirect second-order effects on tracking error: An asset that covaries positively

with other index assets that are underweighted has a higher optimal weight, and vice versa.

In general we expect the first term, which captures the direct effects on trading costs

and tracking error, to dominate. However, there are exceptions such as index futures and

redundant assets. Appendix B analyzes these cases in detail.

The model predicts that w∗i is decreasing in ci (a more illiquid stock has a lower optimal

8Almgren, Thum, Hauptmann, and Li (2005) propose that trading cost is exponential in order size for
each asset, and using a large set of execution data they estimate the exponent to be 1.375. The model’s
predictions remain the same irrespective of the choice of the exponent.
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weight) and increasing in ρij (an asset which has higher correlation with other index assets

has a higher optimal weight). The optimal weight is ambiguous in σi, as a higher volatility

both increases the covariance with other index assets and increases the tracking error.

C. Effects on Asset Liquidity

The model predicts that ETFs, and passive index funds in general, should underweight or

omit index assets with relatively high trading costs. We now explore the effects of ETF

trading on the liquidity of underlying asset markets.

We consider two assets with the same weight in the index, vA = vB = v and the same

volatility σA = σB = σ. For simplicity we assume both assets are uncorrelated with the

rest of the index. There are a mass of NA noise traders in asset A and a mass of NB < NA

noise traders in asset B. Noise traders have exogenous flows that are independently normally

distributed, f̃i ∼ N(0, σ2
f ). The market in each individual asset is made by a single market

maker as in Kyle (1985). Thus, the trading cost of the individual assets is:

ci =
σ

Niσf
, cA < cB. (3)

In other words, the two assets are otherwise identical except that asset A is more liquid

ex ante. We now introduce a mass of NI index investors. The index investors are rational:

when they trade the index, they solve the optimization problem in equation (1) as well.

With the index investors included, the expected trading volume in the underlying assets is:

ci =
σ

(Ni +NIwi)σf
. (4)

Note that for each asset we have two equations ((2) and (4)) and two unknowns (ci and

10

 Electronic copy available at: https://ssrn.com/abstract=3510359 



wi). This pins down the market structure before the ETF is introduced.

We now introduce the ETF. Compared to the pre-ETF period when each individual

submits their demand directly to the market maker, now the authorized participant collects

all the index investors’ order flow, submits the netted flow to the market maker, and creates

or redeems shares with the ETF provider. This has two effects on the market.

First, as the individual index investors’ flows are netted by the AP, the market maker’s

expected trading volume falls, and the liquidity in the individual assets becomes:

c′i =
σ

(Ni +
√
NIwETFi )σf

.

This netting effect strictly worsens liquidity in the underlying assets. However it is welfare-

improving for the index investors, because they equally share the reduced trading cost in-

curred by their netted flow. The effective trading cost they face is:

c′i,net =
σ

NI(Ni +
√
NIwETFi )σf

.

This relation makes clear why index investors substitute into the ETF as
∑
c′i,netw

ETF
i <∑

ciwi.

We now turn to the second effect of the ETF’s introduction. Because the ETF is much

cheaper to trade, demand for investing in the index increases. This is the demand effect.

That is, a new mass N ′I of index investors enter the market. This effect increases the expected

order flow faced by the market maker, and changes the trading costs in the individual assets:

c′′i =
σ

(Ni +
√
NI +N ′Iw

ETF
i )σf

. (5)

11
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The model predicts that the effects of ETF trading on the liquidity of index assets is am-

biguous, depending on the relative strength of the netting effect and the demand effect. For

intuition, we next provide a numerical example. Details of the calibration are in Appendix

section C.

We characterize the change in the liquidity gap between the two assets as:

∆Gap = (c′′B − c′′A)− (cB − cA).

When ∆Gap is positive, the preexisting liquidity differential between asset A and B becomes

wider, and vice versa. Figure 2 plots ∆Gap over different values for the primary flow – the

creation and redemption activity – of the ETF. The blue line shows the effects on the liquidity

gap from an ETF that strategically samples the assets in its underlying index i.e. following

the index implementation strategy in equation (2). We see that for low and moderate levels

of index investing the netting effect dominates, and the ETF widens the liquidity gap. For

very high levels of index investing, the demand effect dominates, and the ETF reduces the

liquidity gap between assets.

Insert Figure 2 About Here

Alternatively, an ETF can choose not to strategically sample, but instead commit to fully

replicate their index weights. The red line in Figure 2 shows the effect on asset liquidity from

an ETF that is fully replicating. We see that the fully replicating ETF has a much lower point

beyond which the demand effect on liquidity dominates, and the ETF reduces the preexisting

liquidity gap. This prediction is intuitive, because the replicating fund overweights the less

liquid asset compared to both the individual index investors and the sampling ETF. Thus

12
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the model predicts that sampling ETFs always have a larger (more positive) differential

effect on asset liquidity than replicating ETFs.

II. Data

The data covers all stocks in the Russell 3000 index from 2009 to 2018. We focus on Russell

3000 index stocks to make sure all the stocks in the sample are constituents of indices that

are tracked by ETFs with meaningful assets under management and trading volume. We

obtain quarterly fund holdings from the union of the CRSP mutual fund holdings database

and the Thompson-Reuters S12 database as both databases have gaps in their coverage.

Returns, trading volume, and other market data for both stocks and ETFs are from the

CRSP daily file. We obtain index membership and their weights by month directly from

Russell Investments for the Russell 1000 (large-cap) and Russell 2000 (small-cap) indexes.

Table 1 Panel A reports the summary statistics from the sample. Note that the Russell

3000 excludes micro-cap and foreign stocks. The market capitalization measure has a mean

of $6.7 billion and a median of $1.2 billion. The effective spread captures trading costs,

measured as the difference between the price in which a market order executes and the mid-

quote on the market the instant before. The lower the effective spread, the more liquid the

stock. The effective spread in our sample has a mean of 0.0043 and a median 0.0016, showing

that a few illiquid stocks skew the effective spread distribution to the right. Stock volatility

has a slightly right-skewed distribution with a mean of 0.025 and a median of 0.021. The

precise definition of all variables can be found in Appendix Section A.

Insert Table 1 About Here

Table 1 Panel B shows summary statistics for the ETFs in the sample, which is all U.S.
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equity ETFs from 2009 to 2018 in the CRSP mutual funds database with at least $10 million

in assets under management. Figure 3 Panel A shows how the total assets under management

of U.S. equity ETFs has evolved over time.

Insert Figure 3 About Here

We split the sample ETFs on the basis of their index implementation strategy. Equity

ETFs mainly adopt two implementation strategies, full replication and statistical sampling.

We categorize ETFs that state in their prospectus that they hold all or substantially all

stocks in the index as Replicator ETFs. We categorize ETFs that state in their prospectuses

that they statistically sample a subset of index stocks as Sampler ETFs. 7% of ETFs in

the sample use a different implementation strategy such as derivative contracts to track the

underlying indices, which we refer to as Other ETFs. These are typically leveraged ETFs or

inverse ETFs.

We obtain implementation strategy information from Bloomberg’s equity fund charac-

teristics and verify via manual checks through ETFs’ prospectuses.9 On average Sampler

ETFs have slightly more assets under management (AUM), with a mean of $2.8 billion, than

replicator ETFs, with a mean of $1.9 billion. There is almost complete overlap (common

support) across the distributions of the AUMs of the two types of ETFs. The expense ratios,

reported in CRSP Mutual Fund Database, are also similar between the two types of ETFs.

Replicator ETFs have a mean expense ratio of 45 basis points (bps) while Sampler ETFs

have an expense ratio of 44 bps.

9ETF prospectuses are obtained from each ETF’s own official website by the ETF provider. Note that
we constructed the sample using CRSP, which is survivorship free, and then obtained the implementation
strategy information according to the list of ETFs we have. This addresses concerns of potential survivorship
bias that may arise due to some inactive ETFs’ data not being available in Bloomberg or ETF’s website
alone.

14
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The main difference between Replicator and Sampler ETFs is in their annual turnover

ratio, measuring the portion of the portfolio that is replaced compared to the previous year.

Replicator ETFs have a mean turnover ratio of 41% while Sampler ETFs have a mean

turnover ratio of 28%. This is natural, as Replicator ETFs’ portfolio weights are strictly

dictated by the index weights and so need to be adjusted more frequently. Sampler ETFs on

the other hand have discretion in their trading decisions and can delay or forego adjusting

their portfolio weights.

We drop ETFs in the Other implementation strategy category in all subsequent tests, as

their index replication strategy is entirely different. Reflecting this, their summary statistics

are quite different from the Replicator and Sampler ETFs. The Other ETFs on average have

much smaller AUMs, higher fees, and higher turnover.

III. Empirical Tests: ETF Trading and Stock Liquidity

This section tests the model’s predictions. We first test whether ETFs underweight or

completely omit stocks that are ex ante illiquid. Next we test how ETFs’ weighting decision

changes the liquidity of the underlying index assets. Finally, we separately test the effect

by samplers and replicators. The empirical results in all tests are consistent with the model

predictions.

A. Do Funds Omit Illiquid Assets?

The model predicts that ETF’s underlying basket underweights illiquid stocks due to their

higher trading costs. ETF provider can choose to omit certain stocks altogether if their

liquidity is low. To test this predictions, we use the quarterly holdings of ETFs that track

15

 Electronic copy available at: https://ssrn.com/abstract=3510359 



the Russell 1000 (large-cap) and the Russell 2000 (small-cap) index. We focus on ETFs

that track Russell Index here because historical index member list and their weights are not

publicly available in general. We obtain directly from FTSE Russell the index weights as

well as the ETFs that tracks Russell Index. 22 ETFs with unique CRSP portno track Russell

1000 Index while 23 track Russell 2000 Index. Table 2 tests how funds’ holdings deviated

from their target index. The unit of observation is at the quarter t, ETF j, and index stock i

level. The dependent variable is a dummy variable, 1Omittedi,j,t , that equals 1 when the stock

is in the fund’s target index, but is not in the fund’s holdings, and zero otherwise. That is,

the dependent variable is turned on when the fund did not hold that stock, although the stock

was a member of its target index. The independent variable of interest is stock liquidity,

ESpread, measured by the dollar-weighted percentage effective spread and winsorized at 1%

and 99% level to make sure the results are not driven by outliers. Too rule out alternative

explanations, stock-month level controls and different fixed effects are added. We use the

Linear Probability Model instead of Probit or Logit because fixed effects lead to biased

estimates in non-linear models (Greene, Han, and Schmidt (2002)):

1Omittedi,j,t = βESpreadi,t + χXi,t + κ+ εi,j,t , (6)

Insert Table 2 About Here

where Xi,t is the control variables including stock return volatility, V olatilityi,t, measured

by standard deviation of daily stock return of stock i in the last month in quarter t, and

stock’s correlation with the index, Correlation w Indexi,t, measured by the the correlation

between daily return of stock i and daily return of the index (either Russell 1000 Index or

Russell 2000 Index) that includes stock i in the last month in quarter t. We control for
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volatility and correlation with the index because the model predicts that they affect ETF’s

basket weighting decision as well and the variable of interest is stock liquidity. We also

control for the index weight of stock i in month t, IndexWeighti,t, so that the regression

compares the stocks that are equally important to the index. All the control variables are

also winsorized at 1% and 99% level.

κ is fix effects. In Table 2 Column 1, we include fund fixed effects and quarter fixed effects.

It is possible that there is a general trend affecting ETFs’ weighting decision throughout time.

For example, as ETF market grew larger and more sophisticated and investors became

more demanding, ETFs choose to put more emphasize on minimizing tracking errors in

recent years than before, which could bias the results. Adding quarter fixed effects rules

out this possibility. Similarly, fund fixed effects sweep out potential time-invariant fund-

specific omitted variables, such as the heterogeneity in ETFs’ preference over lower track

error and lower trading costs. We are also concerned about potential time-varying fund-

specific omitted variables. For example, each fund can hire new fund managers and/or

change their preference in cost-error tradeoff at any point in the sample period, therefore

driving the weighting decision. Column 2 addresses this issue by adding fund-by-quarter

fixed effects, and thus compares stocks only within each fund’s quarterly holdings snapshot.

Finally, because Russell index weights are float-adjusted, the index weight for each stock

covaries strongly with its liquidity. For example, highly liquid stocks in general have a higher

float-adjusted market capitalization, therefore mechanically have a higher weight in Russell

Index. To address this, in Column 3 we assign each index stock in each quarter to one of

300 index buckets, sorted by their index weight. Therefore each bucket contains 10 index

stocks that had similar size and liquidity. Adding bucket fixed effects thus compares each

stock with a small set of peer stocks, in the same index, that were equally important from
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the index’s perspective. Unsurprisingly, after adding bucket fixed effects, IndexWeighti,t is

no longer statistically significant.

In all cases a stock’s liquidity, measured by its effective spread, positively predicts omis-

sion by ETFs. That is, index stocks that were less liquid ex ante were more likely to be

omitted from funds’ holdings. The coefficient of ESpreadi,t of 0.015 suggests the relationship

is economically sizeable, as a 10 basis points increase in a stock’s percentage effective spread

is associated with a 15% increase in its probability of being omitted by ETFs that track the

index. The holdings data show that ETF holdings systematically deviate from their target

index in ways that are consistent with the model. We test how ETFs’ basket weighting

decision affects the liquidity of underlying stocks over time in the next section.

B. Does ETF Primary Flow Affect Liquidity?

The model predicts that as illiquid stocks are underweighted or omitted in ETF holdings

compared to their target index, ETFs generate more trading activity in underlying index

assets that are more liquid ex ante, and vice versa, widening the liquidity gap. We test this

hypothesis in this section. The objective is not to isolate the direct effects of variation in ETF

trading as in e.g., Ben-David et al. (2018). Rather, the hypothesis is that in equilibrium

as investors move from trading individual index assets to trading ETFs, trading volume

and liquidity will decline in relative terms for index assets that are more illiquid ex ante.

Specifically, the model predicts that the effects of ETF trading on asset markets are driven

by the fund’s implementation strategy, via the authorized participants’ trading activities.

The key measure is primary flow, the net ETF share creation and redemption. To

calculate primary flow, we obtain ETF’s daily shares outstanding from Bloomberg.10 Each

10Brown, Davies, and Ringgenberg (2019) point out that compared to CRSP, Bloomberg’s data on daily
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ETF j’s primary flow on day t is calculated as the change in shares outstanding on day t

compared to day t− 1 times the closing price on day t:

PrimaryF lowj,t = (Shroutj,t − Shroutj,t−1)× pj,t .

We focus on primary flow instead of total trading volume for two reasons. First, much of

the trading activity in ETF shares is bilateral between secondary market investors and does

not involve an authorized participant on either side. For such trades there is no accompanying

trading in the underlying assets. Second, large block trades may be executed directly through

an authorized participant but do not appear in the exchange volume (Lettau & Madhavan,

2018b). The primary flow measure address these two issues by capturing the net inflow or

outflow to the ETF each day. This measure directly corresponds to the end-of-day netted

order flow in the model.

As a measure of fund flows, ETF primary flow has two main differences with the literature

on mutual fund flows (i.e. Coval and Stafford (2007); Goldstein, Li, and Yang (2013)). First,

in the mutual fund flows setting the funds are open-ended mutual funds and money flows

directly between investors and the fund. Second, in that setting the mutual funds are almost

all actively managed, and thus they have discretion in adjusting their holdings. By contrast,

in our setting ETF primary flows occur through authorized participants, while the weights

on the underlying assets are determined by the ETF provider.

In order to test the model prediction that the primary flow widens the ex ante liquidity

gap, we construct an aggregate primary flow measure on daily level. We aggregate the the

individual primary flow of all the ETFs in the sample, which is all U.S. equity ETFs from

2009 to 2018 in the CRSP Mutual Fund Database with at least $10 million assets under

shares outstanding is more accurate.

19

 Electronic copy available at: https://ssrn.com/abstract=3510359 



management. This covers over 99% of the assets under management and trading activities

of all U.S. equity ETFs:

PrimaryF lowt =
∑
j

PrimaryF lowj,t .

This measure captures the intensity of all authorized participants’ trading in the underlying

assets as a result of making the market for all the ETFs in the sample at day t. The model

predicts that this measure drives the ex ante liquidity gap between index stocks to go up. We

focus this measure as the main independent variable of interest and refer to this aggregate

measure when we use “primary flow” in all subsequent tests. 11

Insert Figure 4 About Here

For each month, we sort the sample stocks into quintiles based on their average effective

spread in previous month. The first quintile contains the most liquid stocks and the fifth

quintile contains the most illiquid stocks ex ante. We choose one-month window for two

reasons. First, stock liquidity exhibits strong short-term reversal. Thus, if we sort stocks

based on their effective spread on day t − 1, the relative liquidity change on day t will

11Ideally, we would want to construct a more refined primary flow measure on stock-day level:

PrimaryF lowi,t =
∑
j

PrimaryF lowj,t × wi,j,t ∀j s.t. stock i ∈ ETF j .

where wi, j, t is stock i’s basket weight in ETF j on day t. That is, we captures the exact portion of the
primary flow that goes into each stock. This measure directly corresponds to the

√
NI +N ′Iw

ETF
i term in

equation (5). However, this requires us to know all the ETFs’ basket weights on daily level. The basket
weight is considered proprietary knowledge of ETF provider and is difficult to obtain. To circumvent this,
we tried focusing only on the 45 Russell ETFs used in previous section and use the index weights (which we
obtained from FTSE Russell) to proxy for ETFs’ basket weights. This allows us to come up with a stock-day
level primary flow but severely limited the scope of ETFs in the study. All the results using this refined
primary flow measure are qualitatively the same compared to the results in the paper. We decide to use the
less refined but broader primary flow measure to draw more general conclusions.
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be largely mechanical. That is, stocks in most liquid quintile will become less liquid, and

vice versa, dictated by liquidity’s short-term reversal pattern. Second, when ETF providers

observe stock liquidity to choose their basket weight, it is unlikely that they will decide what

stocks are liquid and illiquid based solely on stocks’ liquidity yesterday. In other words,

they will use a relatively longer window to form a more informative view on stock liquidity

to drive their weighting decisions. Therefore, albeit somewhat arbitrary, one month is a

natural choice for the sorting window. The results are qualitatively the same when we use

two-month and three-month window for lagged liquidity sorting.

Figure 4 plots the relation between ETF primary flow and asset liquidity. The x-axis

is the daily primary flow, and the y-axis is the daily percentage change in stock liquidity,

measured as log(ESpreadi,t)− log(ESpreadi,t−1). Panel A shows that there is no significant

association between the daily total ETF primary flow and daily changes in stock liquidity.

That is, ETF primary flows in either direction have no effect on the liquidity of ex ante

liquid stocks.

By contrast, Figure 4 panel B shows that for illiquid stocks there is a strongly upward-

sloping relation in both directions. On days with larger magnitude of ETF primary flows,

either positive or negative, the effective spread of illiquid stocks goes up significantly. That

is, ETF primary flows, in both directions, are strongly associated with a reduction in the

liquidity of illiquid stocks. This pattern is consistent with the model, as illiquid stocks are

underweighted or omitted in the ETF’s underlying basket, therefore in the trading activity

of authorized participants.

To formally examine the relation between ETF primary flows and stock liquidity, we

regress the daily change in effective spread for each index stock i on the magnitude of ETF

primary flow that day, separately for each lagged liquidity quintile by interacting primary
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flow magnitude with Liquidqi,t, a dummy variable that equals 1 if stock i is in the liquidity

quintile q for the last month as of day t. We also add stock-level lagged controls and fixed

effects by stock and date:

∆ ESpreadi,t =
5∑
q=1

βq×|PrimaryF lowt|×Liquidi,q,t+Liquidi,q,t+χXi,t−1+γi+κt+εi,t , (7)

where Xi,t−1 is stock-level lagged controls including lagged stock liquidity, measured

by stock i’s log turnover, log(Turnoveri,t−1), and lagged stock market capitalization. This

makes sure the main coefficients of interests, βq, captures the PrimaryF lowt effect on change

in stock liquidity among stocks that are equally important to the index. We use stock

turnover instead of effective spread to control for lagged liquidity here because we want

to avoid any mechanical relationship due to having effective spread on both sides of the

equation. All control variables are winsorized at 1% and 99% level to make sure outliers

don’t drive the results.

We controlled for quintile main effects by including Liquidqi,t. This sweeps out potential

omitted variables that differentially affect the liquidity of stocks in different quintiles but

are orthogonal to primary flow. The fixed effects by date, κt, sweeps out all observed or

unobserved factors, for each day, that change stock liquidity in the same direction across all

stocks. In other words, the specification isolates daily changes in stock liquidity in relative

terms across the quintiles. Notice that one dummy variable Liquidqi,t must be excluded, as

including all five is collinear with the daily fixed effects. In the estimates the omitted dummy

variable is always for quintile 3, Liquid3
i,t. This convention lets us estimate the relative effects

of daily ETF primary flows on the most-liquid and least-liquid stocks. Stock fixed effects, γi,

is also added to rule out potential time-invariant stock-specific omitted variables that affect
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stock liquidity. The results are reported in Table 3.

Insert Table 3 About Here

Table 3 Column 1 shows a clear differential relation of individual stock liquidity with daily

ETF primary flows. On days with larger ETF primary flows, in either direction, liquidity for

liquid stocks improved while liquidity for illiquid stocks worsened. The difference between

the coefficients of the most liquid vs. most illiquid stocks is strongly statistically significant

(and for all other columns in the table as well), with an F-statistic of 90.1. The difference

is also economically significant. The average annual absolute primary flow in the sample is

$1.03 trillion, which corresponds to an 11.9% (exp(0.019× 1.03)− 1) increase in the ratio of

the effective spreads of least liquid versus most liquid stocks.

As Figure 3 panel B shows, the magnitude of ETF primary flows has increased steadily

throughout the sample period; hence, we scale the daily dollar amount so that that the

independent variable has a stationary distribution. Table 3 Column 2 repeats the estimates,

scaling the daily ETF primary flows by the total AUM of the ETFs in the sample as of the

previous trading day. The results are still both statistically and economically significant.

The average annual absolute primary flow as a percentage of total AUM in the sample is

124%, which corresponds to a 16.0% (exp(12.00 × 124%/100) − 1) increase in the ratio of

the effective spreads of least liquid versus most liquid stocks.

The model predicts that primary flow in either direction have the effect documented in

Columns 1 and 2, because both positive and negative primary flow will trigger authorized

participants’ trading activities in the underlying assets. To test this prediction, in Table

3 Columns 3 and 4 we break the sample into days when the total ETF primary flow is

positive (Column 3) versus days when it is negative (Column 4). As shown by the number of
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observations in the table, there are slightly more net creation days (58%) than redemption

days (42%). We see that the larger the magnitude of ETF primary flow – in either direction

– the larger the bifurcation of individual stocks’ liquidity.

The effect on the most liquid stocks of ETF redemptions is not statistically significant.

This is likely due to authorized participants’ existing operational short positions (Evans et

al., 2019). When redeeming, authorized participants receive a basket of underlying assets,

the most liquid ones in which can be netted with their operational short therefore there is

no trading in the underlying market and the effect is muted. Least liquid assets get traded

regardless because operational shorts only take place in most liquid stocks. On the other

hand, in creation days, the most liquid stocks still need to be bought in underlying market

to be delivered to the provider because of authorized participants’ leverage constraint.

For trading volume, measured by share turnover, V olumei,t/Shrouti,t, in individual stock,

the pattern is in the opposite direction. Table 3 Columns 5 through 8 repeat the analyses

using the daily percentage change in share turnover as the dependent variable and show

that regardless of the unit of measurement, and symmetrically in both directions, a larger

magnitude of ETF primary flow is associated with a widening liquidity gap between ex ante

liquid and illiquid stocks.

In sum, across a variety of measures of ETF primary flow, and in both positive and

negative directions (i.e. net creation and net redemption), we find differential effects on

liquidity and trading volume for individual stocks that are consistent with the predictions of

the model. Next, we test how Replicator and Sampler ETFs affect stock liquidity differently.
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C. Replicator versus Sampler ETFs and Stock Liquidity

A key prediction that is unique to the model is that Sampler ETFs should cause a larger

(more positive) differential effect on asset markets than Replicator ETFs. Moreover, from

an investor’s point of view there is no salient difference between an ETF that samples

and an ETF that fully replicates. Because an ETF’s implementation strategy is set at

inception, and because investors are indifferent whether they are trading a replicator or

sampler, confounding factors such as news arrival, algorithmic trading, or investor behavior

predict no difference in the relation for replicator versus sampler funds. Thus, comparing

the effects of primary flows between the two types of index implementation strategy is a

empirically clean test of the model.

One concern with such a comparison is that replicator and sampler funds differ on other

dimensions. For example, funds that track an index of large liquid assets such as the S&P500

are more likely to be fully replicating while funds that track an index containing small and

illiquid assets such as the Russell 2000 are more likely to be samplers. This fact is again

consistent with the main hypothesis, but it potentially distorts the comparison between

replicator and sampler ETFs’ primary flow effects.

To address this concern we construct a matched set of replicator and sampler ETFs. For

each fund-year in the data that is a sampler (i.e. replicates their target index statistically

and is not fully replicating), we attempt to match it to a replicator fund in the same year.

Matched fund-year pairs must have the same detailed four-character CRSP objective code

and assets under management (AUM) at the beginning of the year that is within 25% of

each other. When there are multiple matches we pick the closest match in terms of AUM.

For example, the ALPS Dividend Dogs ETF (ticker SDOG, AUM $1.86B, replicator), which

tracks a subset of the S&P500 index consisting of the five firms in each sector with the
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highest dividend yield, is matched with the WisdomTree U.S. Large-Cap Dividend Fund

(ticker DLN, AUM $1.88B, sampler) which tracks the 300 largest companies ranked by

market capitalization from the WisdomTree U.S. Dividend Index. Thus, these are two

large-cap dividend funds which began that year (2016) with almost identical assets under

management.

In all, we construct 599 matched fund-year pairs, for an average of 60 matched pairs per

year. The average total AUM per year in 2018 dollars is $114B for the sampler funds and

$118B for the replicator funds, so the average sampler (replicator) fund has $1.90B ($1.97B)

in assets under management. Figure 5 compares the distributions of fund AUM, expense

ratio and turnover between the matched samples. By construction, the distributions of fund

AUM are nearly identical. The replicator funds have slightly higher expense ratios and

turnover on average, but overall the distributions of those fund characteristics are also very

similar.

Insert Figure 5 About Here

Table 4 compares the effects of daily ETF primary flows between the matched set of

replicator ETFs versus sampler ETFs.

Insert Table 4 About Here

We see that primary flows for both types of ETF affect trading activity (share turnover)

in a consistent direction (Columns 2 and 4). However, the effects of ETF primary flow on

liquidity are of opposite sign between the two types of ETF. Primary flows for replicator

ETFs (Column 1) are associated with a shrinking liquidity gap while, by contrast, primary

flows for sampler ETFs (Column 3) are associated with a widening liquidity gap. The
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magnitude of sampler ETFs’ differential effect (β5 − β1) is much smaller compared to the

results with pooled primary flow in table 3 Column 2. This is because in the matching

process we disproportionately lose more AUM than dollar amount primary flow due to lack

of common support in ETFs with exotic fund objectives, which usually have muted creation

and redemption activities. This inflates the magnitude of the independent variable, dollar

amount primary flow scaled by ETFs AUM, and attenuates the relation.

The result is consistent with the model’s specific prediction that sampler ETFs’ effect on

liquidity is always larger (more positive) than that of the replicators. Empirically, we see

that the sampler ETFs have a positive gap-widening effect while replicators have a negative

gap-shrinking effect. This empirical pattern is difficult to explain via other confounding

factors because (i) other confounding variables are swept out via the stock-day controls

and fixed effects, (ii) the matched fund pairs follow similar indices and have similar assets

under management, and (iii) traders and investors are indifferent whether a given fund is a

replicator or a sampler.

IV. Alternative explanations

One concern with the results is that market dynamics change over time, and could covary

with both ETF primary flow and stock turnover and liquidity. For example, the arrival of

index-relevant information could drive increased ETF trading activity, and also cause market

makers to reduce their trading activity and widen their bid/ask spreads, particularly in less

liquid stocks. We examine these potential confounds in two ways.

First, it could be that when there is market-moving news (or the risk of market-moving

news arriving), market makers reduce liquidity more in stocks that were less liquid ex ante.
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To examine this possibility, we first add the magnitude (absolute value) of the CRSP value-

weighted U.S. market index as an additional explanatory variable, interacted with each

stock’s lagged liquidity quintile. Table 5 Columns 1 and 2 show that the relationship between

ETF primary flows and asset liquidity is effectively unchanged when we add the daily market

return as an additional explanatory factor (compare with Table 3 Column 3 and 7).

Insert Table 5 About Here

Second, we drop from the sample any days in which the U.S. stock market had a return,

measured by CRSP value-weighted U.S. market index return, outside the range [-0.5%,

+0.5%]. This filter leaves us with a subsample of 1,291 trading days on which the market

return was nearly unchanged. Table 5 Columns 3 and 4 show the results. The differential

relationship between ETF primary flows and stock liquidity is even stronger than in the full

sample, particularly for the least liquid set of underlying stocks, and the relationship with

stock-level trading activity is again apparent. Thus, on quiet market days, the relationship

between ETF primary flows and stock liquidity is actually stronger than on days when the

market moved a lot.

The third way that we examine other market factors is to control directly for time-varying

factors such as high frequency trading activity and market fragmentation that are well known

to have great impact on liquidity. We use the SEC MIDAS data to construct measures of

both high frequency trading activity and market fragmentation for each stock by month

individually from 2012 to 2018. For high frequency trading activity, we construct the trade-

to-order ratio following the same procedure in (Weller, 2017). For market fragmentation, we
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construct an HHI of trading volumes across market venues:

HHIi,t =
∑
j

(
Trading volumei,j,t∑
j Trading volumei,j,t

)2

where i denotes stock, j denotes market venue, and t denotes month. The results when

we add those stock-level measures as controls are shown in Table 6.

Insert Table 6 About Here

We see that the differential relations of daily total ETF primary flow with stock liquidity

and turnover are still present, both across all days in the more recent sample (Columns 1

and 2) and when we condition down to days on which the market did not move (Columns

3 and 4). We conclude that recent trends in high frequency trading activity and market

fragmentation do not explain the results.

V. Conclusion

An ETF’s objective is to closely track a target index at a low cost. In this paper we document

the direct consequences of ETF implementation strategy, most prominently a bifurcation

effect on the liquidity of the underlying index assets. Liquid stocks become more liquid, and

illiquid stocks become more illiquid, due to ETF trading activity.

We construct a stylized model to characterize the trade-off between tracking error and

trading cost. The model predicts that for stocks that are illiquid and expensive to trade,

index funds and ETF providers are better off underweighting or omitting these stocks. The

model further predicts that the effects of ETF trading on underlying assets markets is de-

termined by their index replication strategy. This is an important point for the academic
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literature on the effects of the rise of index investing.

Our contribution is two-fold. First, although comovement in stock liquidity is well studied

over the past two decades, the widening liquidity gap in the U.S. stock market since 2006

has received little attention. The theory and results in our paper help explain this fact

and further predict that as long as ETF trading activity continues to increase, the liquidity

gap is predicted to widen even further. Second, we point out a treatment effect that has

been ignored by empirical studies in this field – index constituents being systematically

underweighted or omitted from the ETF basket. Mistakenly classifying omitted stocks as

treated stocks (as will happen using either index weights or index assignment to proxy for

fund ownership) can result in biased estimates of the effects of index investing. Thus, the

results should inform future empirical research as well.
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Figure 1. The evolution of U.S. stock liquidity

(a) Amihud measure

0.
12

5
0.

25
0.

5
1

2
N

or
m

al
iz

ed
 A

m
ih

ud
 P

ric
e 

Im
pa

ct

2000 2005 2010 2015

High Liquidity Medium Liquidity Low Liquidity

(b) Effective Spread
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The figure plots the distribution of liquidity across U.S. common stocks over time. Stocks
are sorted into terciles on the basis of their liquidity each quarter. Panel A plots the average
quarterly Amihud measure from 2000 to 2018 for each tercile, while panel B plots the average
quarterly effective spreads from 2000 to 2018 for each tercile. Both measures are normalized
to their 2000 level. The sample includes all U.S. common stocks with market capitalization
greater than $300M in 2018 dollars.
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Figure 2. The relative change in liquidity between underlying assets
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The figure plots the model implied relative change in liquidity, from pre- to post-ETF,
between the underlying index assets as a function of ETF primary flow (net creation /
redemption activity), scaled by trading volume in the individual assets. A positive value of
∆Gap means the liquidity gap widens (bifurcating effect), while a negative value means the
liquidity gap is reduced.
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Figure 3. ETF assets under management and primary flows

(a) ETF assets under management
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Panel A plots total assets under management and panel B plots total positive and negative
primary flows (total dollar create and redeem activity, respectively) in U.S. equity exchange
traded funds (ETFs), quarterly from 2000 to 2018.
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Figure 4. ETF primary flow and changes in asset liquidity

(a) Quintile 1 (Most liquid ex ante)
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(b) Quintile 5 (Least liquid ex ante)
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The figure plots daily changes in effective spreads for individual stocks against daily total
primary flows (total dollar creations minus redemptions scaled by AUM) for U.S. equity
ETFs. Panels A and B plot the relation for stocks that were in the first (most liquid) and
fifth quintile (least liquid) respectively sorted by effective spread as of the previous month
(the most liquid and least liquid stocks ex ante). The blue lines show the linear best-fit line,
separately estimated for positive and negative ETF primary flows. The dashed lines show
95% confidence intervals.
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Figure 5. Fund characteristics of replicators and samplers in matched sample

(a) Fund AUM
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(b) Fund expense ratio
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(c) Fund turnover ratio
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The figure plots histograms of log assets under management (a), expense ratios (b), and
yearly turnover ratios (c), comparing the matched samples of replicator ETFs (left) and
sampler ETFs (right).
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Table 1
Summary statistics

Panel A presents summary statistics of the sample stocks, which consist of all Russell 3000
members (including both the Russell 1000 large-cap index and the Russell 2000 small-cap
index) monthly from 2009-2018. The sample contains 5,743 unique stocks. Panel B displays
summary statistics of ETFs in the sample, which consists of all U.S. equity ETFs in the CRSP
mutual fund database with at least $10 million assets under management from 2009-2018.
Panel B is split on the basis of each fund’s implementation strategy. Variable definitions can
be found in Appendix section A.

Panel A: Index Stocks

Mean StDev P10 Median P90

Market capitalization ($ Millions) 6,700 25,267 198 1,198 12,672

Effective spread 0.0043 0.0287 0.0004 0.0016 0.0082

Volatility 0.025 0.014 0.011 0.021 0.042

Panel B: Exchange Traded Funds

Observations Mean StDev P10 Median P90

Full Replication

AUM ($ Millions) 4,233 1,921 9,239 23 203 3,902

Expense Ratio (%) 4,059 0.45 0.22 0.14 0.48 0.70

Turnover 4,043 0.41 0.55 0.06 0.25 0.94

Sampling / Optimized

AUM ($ Millions) 1,279 2,802 9,894 22 282 4,725

Expense Ratio (%) 1,226 0.44 0.17 0.20 0.48 0.63

Turnover 1,220 0.28 0.28 0.05 0.20 0.61

Other

AUM ($ Millions) 425 268 538 15 60 816

Expense Ratio (%) 397 0.81 0.27 0.45 0.95 0.99

Turnover 386 1.00 2.03 0.07 0.45 2.66
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Table 2
Stock characteristics and ETF holdings

The table presents regressions of quarterly fund holdings by ETFs on liquidity of index stocks:

1Omittedi,j,t = βESpreadi,t + χXi,t + κ+ εi,j,t ,

where the dependent variable 1Omittedijt
is a dummy variable that equals 1 if fund j omitted stock i in its

holdings in quarter t, and 0 if fund j held any number of shares of stock i in quarter t. The independent

variable is effective spread, ESpreadi,t, measured as the average percentage effective spread of stock i in

quarter t. Xi,t is stock level controls including stock volatility, correlation with stock return and index return,

and stock’s index weight. Precise definitions can be found in Appendix section A. κ is fixed effects. The

sample unit is stock-fund-quarter. The sample includes all stocks that were in the Russell 1000 or 2000 index

and all Russell 1000 and 2000 ETFs that reported their holdings in quarter t, from 2009 to 2018. Standard

errors are clustered by stock. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level,

respectively.

(1) (2) (3)

ESpreadi,t 0.014*** 0.014*** 0.015**

(0.005) (0.005) (0.006)

V olatilityi,t 0.016*** 0.017*** 0.016***

(0.004) (0.004) (0.004)

Correlation w Indexi,t -0.007 -0.005 -0.006

(0.012) (0.013) (0.013)

IndexWeighti,t 1.683 1.663 -0.683

(2.131) (2.130) (2.531)

Fund FE Yes No No

Year-Quarter FE Yes No No

Fund x Year-Quarter FE No Yes Yes

Index Bucket FE No No Yes

Observations 1,005,002 1,005,002 1,005,002

R-squared 0.22 0.23 0.24

41

 Electronic copy available at: https://ssrn.com/abstract=3510359 



T
a
b
le

3
E

T
F

p
ri

m
a
ry

fl
o
w

s
a
n
d

a
ss

e
t

li
q
u
id

it
y

T
h

e
ta

b
le

p
re

se
n
ts

re
g
re

ss
io

n
s

o
f

th
e

d
a
il
y

p
er

ce
n
t

ch
a
n

g
es

in
eff

ec
ti

v
e

sp
re

a
d

s
%

∆
E
S
p
r
ea
d
i,
t

a
n

d
tu

rn
o
v
er

%
∆
T
u
r
n
o
v
er

i,
t

o
f

in
d

iv
id

u
a
l

st
o
ck

s
o
n

th
e

m
a
g
n

it
u

d
e

o
f

d
a
il
y

E
T

F
p

ri
m

a
ry

fl
o
w

i.
e.

cr
ea

ti
o
n

a
n

d
re

d
em

p
ti

o
n

a
ct

iv
it

y,
|P
r
im
a
r
y
F
lo
w

t
|.

T
h

e
re

g
re

ss
io

n
es

ti
m

a
te

th
e

P
ri

m
a
ry

F
lo

w
eff

ec
t

se
p

a
ra

te
ly

fo
r

ea
ch

la
g
g
ed

li
q
u

id
it

y
q
u

in
ti

le
:

%
∆
Y
i,
t

=

5 ∑ q
=
1

β
q
×
|P
r
im
a
r
y
F
lo
w

t
|×

L
iq
u
id

q i,
t

+
L
iq
u
id

q i,
t

+
χ
X

i,
t−

1
+
γ
i

+
κ
t

+
ε i

,t
,

T
h

e
d

ep
en

d
en

t
v
a
ri

a
b

le
,

d
a
il
y

p
er

ce
n
ta

g
e

ch
a
n

g
e

in
eff

ec
ti

v
e

sp
re

a
d

s
a
n

d
tu

rn
o
v
er

,
is

ca
lc

u
la

te
d

a
s

lo
g
(Y

i,
t
)
−

lo
g
(Y

i,
t−

1
).

T
h

e
in

d
ep

en
d

en
t

v
a
ri

a
b

le
o
f

in
te

re
st

is
th

e
m

a
g
n

it
u

d
e

o
f

a
g
g
re

g
a
te

p
ri

m
a
ry

fl
o
w

o
f

a
ll

U
.S

.
eq

u
it

y
E

T
F

s
w

it
h

a
t

le
a
st

$
1
0

m
il
li
o
n

a
ss

et
s

u
n

d
er

m
a
n

a
g
em

en
t.
L
iq
u
id

q i,
t

re
p

re
se

n
ts

la
g
g
ed

li
q
u

id
it

y
q
u

in
ti

le
a
n

d
is

a
d

u
m

m
y

v
a
ri

a
b

le
th

a
t

eq
u

a
ls

o
n

e
if

st
o
ck
i

is
in

th
e

li
q
u

id
it

y
q
u

in
ti

le
q

fo
r

th
e

la
st

m
o
n
th

a
s

o
f

d
a
y
t

a
n

d
ze

ro
o
th

er
w

is
e.

Q
u

in
ti

le

1
co

n
ta

in
s

th
e

m
o
st

li
q
u

id
st

o
ck

s
w

h
il
e

q
u

in
ti

le
5

co
n
ta

in
s

th
e

le
a
st

li
q
u

id
st

o
ck

s.
L
iq
u
id

3 i,
t

is
a
lw

a
y
s

o
m

it
te

d
to

a
v
o
id

m
u

lt
ic

o
ll
in

ea
ri

ty
w

it
h

st
o
ck

fi
x
ed

eff
ec

ts
.
X

i,
t−

1
is

st
o
ck

-l
ev

el
co

n
tr

o
ls

in
cl

u
d

in
g

m
a
rk

et
ca

p
it

a
li
za

ti
o
n

a
n

d
li
q
u

id
it

y
la

g
g
ed

b
y

o
n

e
d

a
y

(m
ea

su
re

d
a
s
T
u
r
n
o
v
er

i,
t−

1
fo

r
C

o
lu

m
n

s
1
-4

a
n

d

E
S
p
r
ea
d
i,
t−

1
fo

r
C

o
lu

m
n

s
5
-8

to
a
v
o
id

m
ec

h
a
n

ic
a
l

re
la

ti
o
n

sh
ip

).
T

h
e

p
re

ci
se

d
efi

n
it

io
n

s
ca

n
b

e
fo

u
n

d
in

A
p

p
en

d
ix

se
ct

io
n

A
.

T
h

e
b

o
tt

o
m

o
f

th
e

ta
b

le

re
p

o
rt

s
th

e
d

iff
er

en
ce

o
f

th
e

p
ri

m
a
ry

fl
o
w

eff
ec

ts
o
n

li
q
u

id
it

y
o
f

st
o
ck

s
in

th
e

m
o
st

a
n

d
th

e
le

a
st

li
q
u

id
q
u

in
ti

le
in

p
re

v
io

u
s

m
o
n
th

.
T

h
e

sa
m

p
le

u
n

it
is

st
o
ck

b
y

d
a
y.

T
h

e
sa

m
p

le
co

n
si

st
s

o
f

a
ll

R
u

ss
el

l
3
0
0
0

m
em

b
er

st
o
ck

s
d

a
il
y

fr
o
m

2
0
0
9

to
2
0
1
8
.

S
ta

n
d

a
rd

er
ro

rs
a
re

cl
u

st
er

ed
b
y

st
o
ck

.
*
,

*
*
,

a
n

d
*
*
*

d
en

o
te

st
a
ti

st
ic

a
l

si
g
n

ifi
ca

n
ce

a
t

th
e

1
0
%

,
5
%

,
a
n

d
1
%

le
v
el

,
re

sp
ec

ti
v
el

y.

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

%
∆
E
S
pr
ea
d
i,
t

%
∆
E
S
pr
ea
d
i,
t

%
∆
E
S
pr
ea
d
i,
t

%
∆
E
S
pr
ea
d
i,
t

%
∆
T
u
rn
ov
er
i,
t

%
∆
T
u
rn
ov
er
i,
t

%
∆
T
u
rn
ov
er
i,
t

%
∆
T
u
rn
ov
er
i,
t

|P
ri
m
a
ry
F
lo
w
t|
×
L
iq
u
id

1 i,
t

(M
os

t
L

iq
u

id
)

-0
.0

18
**

*
-2

.1
1*

**
-3

.7
3*

**
0.

07
-0

.0
05

-0
.3

4
-1

.4
3*

*
0.

75

(0
.0

03
)

(0
.2

4)
(0

.3
7)

(0
.3

9)
(0

.0
05

)
(0

.4
2)

(0
.6

6)
(0

.7
5)

|P
ri
m
a
ry
F
lo
w
t|
×
L
iq
u
id

2 i,
t

-0
.0

07
**

*
-1

.4
7*

**
-1

.9
3*

**
-0

.8
2*

0.
00

2
0.

88
*

0.
62

1.
04

(0
.0

03
)

(0
.2

7)
(0

.4
4)

(0
.4

5)
(0

.0
05

)
(0

.4
7)

(0
.7

3)
(0

.8
4)

|P
ri
m
a
ry
F
lo
w
t|
×
L
iq
u
id

3 i,
t

-
-

-
-

-
-

-
-

|P
ri
m
a
ry
F
lo
w
t|
×
L
iq
u
id

4 i,
t

0.
00

6*
1.

49
**

*
2.

49
**

*
0.

12
-0

.0
11

**
-1

.0
2*

*
-1

.3
5*

-0
.6

5

(0
.0

04
)

(0
.3

5)
(0

.5
5)

(0
.5

8)
(0

.0
05

)
(0

.4
7)

(0
.7

6)
(0

.8
9)

|P
ri
m
a
ry
F
lo
w
t|
×
L
iq
u
id

5 i,
t

(L
ea

st
L

iq
u

id
)

0.
08

5*
**

9.
91

**
*

8.
63

**
*

11
.1

2*
**

-0
.0

42
**

*
-3

.1
0*

**
-2

.8
6*

**
-3

.6
3*

**

(0
.0

11
)

(1
.4

7)
(1

.5
1)

(3
.2

3)
(0

.0
07

)
(0

.5
1)

(0
.7

9)
(0

.8
7)

Q
u

in
ti

le
M

ai
n

E
ff

ec
ts

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

S
to

ck
-l

ev
el

C
on

tr
ol

s
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es

S
to

ck
F

E
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es

D
ay

F
E

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

O
b

se
rv

at
io

n
s

7,
21

9,
41

8
7,

21
9,

41
8

4,
20

7,
82

1
3,

01
1,

59
4

7,
21

9,
41

8
7,

21
9,

41
8

4,
20

7,
82

1
3,

01
1,

59
4

R
-s

q
u

ar
ed

0.
01

0.
01

0.
01

0.
01

0.
02

0.
02

0.
02

0.
02

P
ri

m
ar

y
F

lo
w

U
n

it
s

$T
ri

ll
io

n
($

/A
U

M
)/

10
0

($
/A

U
M

)/
10

0
($

/A
U

M
)/

10
0

$T
ri

ll
io

n
($

/A
U

M
)/

10
0

($
/A

U
M

)/
10

0
($

/A
U

M
)/

10
0

S
am

p
le

D
at

es
A

ll
A

ll
P

ri
m

ar
y
F

lo
w
>

0
P

ri
m

ar
y
F

lo
w
<

0
A

ll
A

ll
P

ri
m

ar
y
F

lo
w
>

0
P

ri
m

ar
y
F

lo
w
<

0

β
5
−
β

1
0.

10
9*

**
12

.0
0*

**
12

.3
5*

**
11

.0
1*

**
-0

.0
35

**
*

-2
.7

6*
**

-1
.4

3*
*

-4
.3

7*
**

F
-s

ta
t

90
.1

68
.6

69
.8

11
.8

32
.8

42
.8

5.
1

39
.8

42

 Electronic copy available at: https://ssrn.com/abstract=3510359 



Table 4
ETF primary flows and asset liquidity: Replicator vs sampler ETFs

The table repeats the analyses in table 3 with different way of measuring primary flow. The table presents

regressions of the daily percent changes in effective spreads %∆ESpreadi,t and turnover %∆Turnoveri,t

of individual stocks on the magnitude of daily ETF primary flow i.e. creation and redemption activity,

|PrimaryF lowt|. The daily ETF primary flows are calculated using a matched sample of pairs of replicator

and sampler fund-years that have the same Lipper objective code and similar assets under management

(AUM). We divide sample stocks each month into quintiles on the basis of their liquidity in the previous

month: Liquid 1 contains the most liquid stocks, while Liquid 5 contains the least liquid stocks. Standard

errors are clustered by stock. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level,

respectively.

(1) (2) (3) (4)

%∆ESpreadi,t %∆Turnoveri,t %∆ESpreadi,t %∆Turnoveri,t

|PrimaryF lowt| × Liquid1
i,t (Most Liquid) 0.21*** 0.40*** -1.47*** -0.15

(0.08) (0.13) (0.33) (0.30)

|PrimaryF lowt| × Liquid2
i,t 0.34*** 0.33** -0.24 0.36

(0.09) (0.16) (0.38) (0.35)

|PrimaryF lowt| × Liquid3
i,t - - - -

|PrimaryF lowt| × Liquid4
i,t -0.41*** -0.39** 0.31 -1.53***

(0.13) (0.19) (0.44) (0.56)

|PrimaryF lowt| × Liquid5
i,t (Least Liquid) -0.63** -0.55*** 3.15*** -2.96***

(0.32) (0.17) (0.90) (0.42)

ETF Type Replicators Replicators Samplers Samplers

Quintile Main Effects Yes Yes Yes Yes

Stock-level Controls Yes Yes Yes Yes

Stock FE Yes Yes Yes Yes

Daily FE Yes Yes Yes Yes

Observations 7,219,418 7,219,418 7,219,418 7,219,418

R-squared 0.01 0.02 0.01 0.02

PrimaryFlow Units ($/AUM)/100 ($/AUM)/100 ($/AUM)/100 ($/AUM)/100

β5 − β1 -0.85** -0.95*** 4.63*** -2.81***

F-stat 7.2 43.9 28.4 57.7
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Table 5
ETF primary flows and asset liquidity: Controlling for market-wide news

The table repeats the analyses in table 3 with additional controls and different sample. The table presents regressions of the

daily percent changes in effective spreads %∆ESpreadi,t and turnover %∆Turnoveri,t of individual stocks on the magnitude

of daily ETF primary flow i.e. creation and redemption activity, |PrimaryF lowt|. Columns 1 and 2 interact the liquidity

quintiles with the magnitude of market return, measured as CRSP value-weighted U.S. market index return. The No News

sample in columns 3 and 4 consists only of days on which the market return was smaller than +/- 50 basis points. We divide

sample stocks each month into quintiles on the basis of their liquidity in the previous month: Liquid 1 contains the most liquid

stocks, while Liquid 5 contains the least liquid stocks. Standard errors are clustered by stock. *, **, and *** denote statistical

significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4)

%∆ESpreadi,t %∆Turnoveri,t %∆ESpreadi,t %∆Turnoveri,t

|PrimaryF lowt| × Liquid1
i,t (Most Liquid) 0.21*** 0.40*** -1.47*** -0.15

(0.08) (0.13) (0.33) (0.30)

|PrimaryF lowt| × Liquid2
i,t -1.52*** -0.65 -3.61*** 0.38

(0.31) (0.54) (0.70) (1.10)

|PrimaryF lowt| × Liquid3
i,t - - - -

|PrimaryF lowt| × Liquid4
i,t 0.42 -0.82 1.98** -0.97

(0.41) (0.54) (0.90) (1.12)

|PrimaryF lowt| × Liquid5
i,t (Least Liquid) 9.06*** -1.51*** 17.03*** -3.11***

(2.15) (0.57) (4.07) (1.14)

|MarketRett| × Liquid1
i,t -0.00* 0.01*** -0.01* 0.02**

(0.00) (0.00) (0.01) (0.01)

|MarketRett| × Liquid2
i,t 0.00 0.01*** -0.00 0.03***

(0.00) (0.00) (0.00) (0.01)

|MarketRett| × Liquid3
i,t - - - -

|MarketRett| × Liquid4
i,t 0.01*** -0.00 0.02*** 0.02***

(0.00) (0.00) (0.01) (0.01)

|MarketRett| × Liquid5
i,t 0.01 -0.01*** 0.02 0.02***

(0.01) (0.00) (0.01) (0.01)

Sample Dates All All No News No News

Quintile Main Effects Yes Yes Yes Yes

Stock-level Controls Yes Yes Yes Yes

Stock FE Yes Yes Yes Yes

Daily FE Yes Yes Yes Yes

Observations 7,219,418 7,219,418 3,834,554 3,834,554

R-squared 0.01 0.02 0.01 0.02

PrimaryFlow Units ($/AUM)/100 ($/AUM)/100 ($/AUM)/100 ($/AUM)/100

β5 − β1 10.95*** -0.20 22.02*** -2.03**

F-stat 26.2 0.2 29.6 5.3
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Table 6
ETF primary flows and asset liquidity: Controlling for market fragmentation

and HFT activity

The table repeats the analyses in table 3 with additional controls. The table presents regressions of the daily

percent changes in effective spreads %∆ESpreadi,t and turnover %∆Turnoveri,t of individual stocks on the

magnitude of daily ETF primary flow i.e. creation and redemption activity, |PrimaryF lowt|. The Herfindahl

of trading volume across venues, HHIi,t, measures market fragmentation. The trade-to-order ratio, TORi,t,

measures high frequency trading activity. The precise definitions can be found in Appendix section A. The

results are similar using other measures such as Odd-lot ratio, average trade size, and cancel-to-trade ratio.

We divide sample stocks each month into quintiles on the basis of their liquidity in the previous month:

Liquid 1 contains the most liquid stocks, while Liquid 5 contains the least liquid stocks. Standard errors are

clustered by stock. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4)

%∆ESpreadi,t %∆Turnoveri,t %∆ESpreadi,t %∆Turnoveri,t

|PrimaryF lowt| × Liquid1
i,t (Most Liquid) -3.90*** 1.68* -7.97*** 2.03

(0.68) (0.93) (1.04) (1.53)

|PrimaryF lowt| × Liquid2
i,t -1.58** 2.17** -4.42*** 3.20**

(0.77) (0.97) (1.35) (1.57)

|PrimaryF lowt| × Liquid3
i,t - - - -

|PrimaryF lowt| × Liquid4
i,t -1.86** -3.50*** 0.17 -2.71*

(0.92) (1.01) (1.67) (1.53)

|PrimaryF lowt| × Liquid5
i,t (Least Liquid) 6.57*** -10.43*** 11.71*** -11.20***

(2.17) (1.14) (3.87) (1.68)

HHIi,t 0.11*** 0.08*** 0.13*** 0.09***

(0.03) (0.01) (0.04) (0.01)

TORi,t -1.29*** 11.56*** -1.20*** 11.83***

(0.05) (0.20) (0.06) (0.27)

Sample Dates All All No News No News

Control for Market Returns Yes Yes Yes Yes

Quintile Main Effects Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Stock FE Yes Yes Yes Yes

Daily FE Yes Yes Yes Yes

Observations 4,527,432 4,527,432 2,646,165 2,646,165

R-squared 0.02 0.04 0.02 0.04

PrimaryFlow Units ($/AUM)/100 ($/AUM)/100 ($/AUM)/100 ($/AUM)/100

β5 − β1 10.47*** -12.11*** 19.68*** -13.24***

F-stat 24.9 127.5 27.4 70.1

45

 Electronic copy available at: https://ssrn.com/abstract=3510359 



Appendix

A. Variable Definitions

Table A1: Variable Definitions

Variable Names Description

%∆ESpreadi,t The percentage change in effective spread of stock i on day t
is calculated as following:

%∆ESpreadi,t = log(ESpreadi,t)− log(ESpreadi,t−1)

%∆Turnoveri,t The percentage change in turnover of stock i on day t is cal-
culated as following:

%∆Turnoveri,t = log(Turnoveri,t)− log(Turnoveri,t−1)

1Omitted; i,j,t Dummy variable that equals 1 if ETF j omitted stock i in
quarter t.

Amihudi,t Absolute value of monthly return of stock i divided by
monthly dollar trading volume in month t. Monthly dollar
trading volume is calculated as monthly share trading volume
times end of month closing price.

AUMi,t (ETF) Price of ETF i times shares outstanding of ETF i on day t.

Correlation w Indexi,t The correlation between daily returns of stock i and the daily
returns of the index that includes stock i in quarter t

.

Continued on next page
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Table A1 – continued from previous page

Variable Definitions Description

ESpreadi,t Let i denote stock, t denote day, and s denote intraday time.
The dollar-weighted percentage effective spread of stock i on
day t is calculated as following:∑

s

| log(priceits)− log(midpointits)| · priceits · sizeits∑
s priceits · sizeits

Buy-sell indicator are created using method in Lee and Ready
(1991) and quotes prior to 2015 are interpolated using method
in Holden and Jacobsen (2014).

Expense Ratioi,t Expense ratio of ETF i in year t from CRSP Mutual Fund
Database.

HHIi,t Let i denote stock, j denote exchange, and t denote month.
Herfindahl-Hirschman Index is calculated monthly as follow-
ing:

HHIi,t =
∑
j

(
Trading Volumeijt∑
j Trading Volumeijt

)2

IndexWeighti,t Stock i ’s weight in index j at month t, from Russell proprietary
data.

Market Capitalizationi,t Closing price of stock i times shares outstanding of stock i on
day t.

MarketRett Return of CRSP value-weighted U.S. market index on day t.

PrimaryFlowt, dollar unit The sum of all individual ETF’s primary flow, PrimaryFlowj,t,
on day t.

PrimaryFlowt, percent unit The dollar unit aggregate primary flow on day t divided by
the total ETF AUM on day t.

Continued on next page
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Table A1 – continued from previous page

Variable Definitions Description

PrimaryFlowj,t, dollar unit The change of the shares outstanding of ETF j from day t-1
to day t times closing price of ETF j on day t.

PrimaryFlowj,t, percent unit The dollar unit primary flow of ETF j on day t divided by
the AUM of ETF j on day t.

Shrouti,t (Shroutj,t) The shares outstanding of stock i (ETF j ) on day t.

TORi,t Trade to order ratio, calculated as the trading volume of stock
i on day t divided by the order volume of stock i on day t.

Turnoveri,t Trading volume of stock i divided by shares outstanding of
stock i on day t.

Volatilityi,t Standard deviation of daily return of stock i in month t.

Volumei,t Trading volume of stock i on day t.

B. Further discussion of the model

B.1. Open-ended index funds

As noted before, the model also applies to traditional open-ended index funds that rebalance

their portfolios after inflows and outflows. The index fund manager chooses their implemen-

tation strategy to attract investors, who again have the same utility function over expected

tracking error and expected trading costs (which investors now bear directly via the man-

agement fee, instead of indirectly via the bid/ask spread):

U = C(w) + λ(w − v)′Σ(w − v)
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The rest of the solution and all comparative statics are the same.

B.2. Trading in index futures

Recall that

w∗i =
1

1 + ci/λσ2
i

vi +
1

1 + ci/λσ2
i

∑
j 6=i

(vj − wj)βj,i

Consider an index for which there is a liquid futures contract. The futures contract has

vi = 0, so the first term is zero. That is, the futures contract is not an index constituent, and

for such assets we would think w∗i should also be zero. But the futures contract is perfectly

correlated with the weighted return of the index constituents, and has very low trading costs

ci. In this case, the optimal weights wj on all the index constituents themselves are close to

zero and the optimal weight on the futures contract is close to one.

B.3. Redundant assets

Recall that

w∗i =
1

1 + ci/λσ2
i

vi +
1

1 + ci/λσ2
i

∑
j 6=i

(vj − wj)βj,i

Consider two perfectly substitutable assets (ρ1,2 = 1) with different relative trading costs
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(c1/σ
2
1 6= c2/σ

2
2). Assume for simplicity that ρ1,j, ρ2,j = 0,∀j 6= 1, 2.12 We have a system of

equations with two equations and two unknowns:

w∗1 = κ1v1 + κ1v2
σ2

σ1

− κ1w2
σ2

σ1

w∗2 = κ2v2 + κ2v1
σ1

σ2

− κ2w1
σ1

σ2

where

κi =
1

1 + ci/λσ2
i

Solve for:

w∗1 =
κ1(1− κ2)

1− κ1κ2

(
v1 +

σ2

σ1

v2

)

Note that, if security one is almost costless to trade, then κ1 → 1, and w∗1 = v1+v2(σ2/σ1).

In other words, security one completely takes security two’s place in the basket. Alternatively,

if security one is infinitely expensive to trade, then κ1 → 0 and its optimal weight is zero.

Between the two corner solutions, the optimal weights tilt in favor of holding the asset that

is relatively cheaper to trade. The cheaper asset does not completely take over because of

the quadratic trading cost.

12More general case with arbitrary ρ gives the same qualitative result.
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B.4. Short selling revenues

On top of the utility function used in the paper and discussed above in appendix, fund

managers may have additional incentives to hold certain assets if they collect the lending

fees from offering their shares to short sellers (Blocher & Whaley, 2016). Short borrow fees

will shift the optimal holdings, but has no impact on the other directional predictions. To

see this, consider the modified utility function:

U = C(w)− S′w + λ(w − v)′Σ(w − v)

where S is the expected short borrow fee per asset, which offsets the expected trading

costs. Solving for asset i, we have:

w∗i =
1

1 + ci/λσ2
i

vi +
1

1 + ci/λσ2
i

∑
j 6=i

(vj − wj)βj,i +
1

ci + λσ2
i

si

Notice that the optimal weights are higher than before, but the comparative statics with

respect to ci, ρi,j and σ2
i are unchanged.

C. Numerical example

We standardize the distributions of the asset payoffs and the noise flow, σ = σf = 1. The

mass of noise traders who trade asset A and B are set to be 100 and 70, NA = 100, NB = 70.

Both assets have 1% index weight, vA = vB = 0.01, and their payoffs have zero correlation
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with the rest of the index. 13 The mass of noise traders who previously homemake index are

200, NI = 250 and their preference parameter over cost-error trade-off is 10, λ = 3. Note

that except for asset A’s noise mass has to be greater than that of asset B, which makes

asset A more liquid, all values can be chosen arbitrarily, and the results are robust to the

choice of numerical values of those parameters.

For the period before the introduction of the ETF, plugging in the numbers and solve

for 2 and 4, we have:

cA = 0.0098, cB = 0.0140, and wA = 0.0067, wB = 0.0053

which characterize the market structure before the ETF is introduced. When ETF is

introduced, its cost-error preference is endogenously determined as λETF =
√
π/2λ = 12.53.

The netting effect is captured by the square root in the denominator in 5, and the demand

effect is captured by N ′I , which is exogenously determined. We leave it open and plug in

different values to repeatedly solve for the system of equations of (2) and (5). A1 plots the

equilibrium solution given different level of new mass being drawn in.

As shown in A1, the introduction of ETF strictly increases the optimal weights for both

assets. This initial jump is due to the fact that ETF has a higher preference for low tracking

error compared to homemade indexer (λETF =
√
π/2λ). As more noise traders trading

ETF, the ETF underweights both assets less. This is because the variance of the aggregate

end-of-period flow goes up, which increases the observed noise volatility by the market maker

and decreases the spread she posts.

13This is a simplifying assumption and forces the optimal basket to always underweight assets as there
is no tracking-error mitigating benefit from holding at-full or even overweighting. Relaxing this assumption
will produce optimal weights that are fully flexible. Therefore, in this numerical example, if an asset is
underweighted relatively less (more), it should be interpreted as being overweighted (underweighted) in a
more generalized setting.
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Trading costs for both assets initially go up with the introduction of the ETF as the

pure netting effect is strictly liquidity-impairing. With the demand effect growing stronger,

the trading costs decreases as it is strictly liquidity-improving. When the new noise traders

pass a critical mass, the demand effect dominates the netting effect and ETF becomes overall

liquidity-improving. However, it’s worth noting that it takes roughly 39100 new noise traders

for asset A and roughly 38700 for asset B for demand effect to start to dominate, while the

initial noise trader mass is only 200. This suggests that ETF is likely overall liquidity-

impairing as the critical mass is too high to achieve.

However, as demonstrated before, even though ETF worsens the liquidity unless the new

noise mass is sufficiently high, noise traders who trade ETF is strictly better off because they

now share the trading cost incurred by the one aggregate flow as opposed to bearing the cost

incurred by their own index-homemaking activity. A2 captures the welfare implications for

different types of investors. The welfare here is measured as the trading cost before ETF

introduction minus that after (such that decreasing trading cost is welfare-improving).

In addition, we can alternatively plot the x-axis as E[|Primary Flow|] instead of the new

mass N ′I , as N ′I is a sufficient statistic that determines E[|Primary Flow|]:

E[|Primary Flow|] =
√
NI +N ′I

√
2

π
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(a) Trading cost

(b) Optimal weight

Figure A1. Asset trading cost and optimal weight pre- and post-ETF

Panel A plots the trading cost and panel B plots the optimal basket weight of both assets.
The solid line represents the post-ETF value and the dashed line represents the pre-ETF
value.
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(a) Underlying assets

(b) ETF

Figure A2. Welfare implication for different traders

The figure plots the difference in trading costs pre- and post-ETF as a measure of investor’s
welfare. Panel A plots the welfare of investors in the underlying assets market and panel B
plots the welfare of investors who trade the ETF.
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