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1. Introduction

The majority of modern equity markets are organized as continuous limit order books. In this

design, market participants submit messages in continuous time, and exchange matching engines

process the messages one by one in order of receipt. Theoretical literature argues that this design

may increase the level of adverse selection (toxicity), because it reduces the ability of liquidity

providers to reprice stale quotes before they are picked off (Budish, Cramton, and Shim (2015)).

Trading costs increase as a result. As a remedy, the literature proposes replacing continuous

trading with frequent batch auctions, in which orders accumulate for a period of time before

being matched against each other, thus giving market makers a better opportunity to change stale

quotes.

Empirical studies have not yet directly examined these theoretical predictions, largely be-

cause switches between the two market designs are rare. We fill this gap by studying a recent

decision by the Taiwan Stock Exchange (TWSE) to move all of its activity from batch auctions to

continuous trading. In a difference-in-differences (DID) setup, we find that continuous trading is

associated with significantly greater adverse selection, a sizeable reduction in displayed liquidity,

and an increase in trading costs.

While important in their own right, changes in liquidity costs are also notable in their poten-

tial to affect investor welfare (Biais, Foucault, and Moinas (2015)). When market participation

becomes costlier, some investors (the end-users of liquidity) may choose to stay on the sidelines,

and gains from trade may decline. To examine this possibility in our setting, we measure trading

volume generated by the uninformed liquidity seekers, a trader category that is perhaps the most

sensitive to liquidity costs, and find that it declines after the switch to continuous trading. Insofar

as this trader category is representative of some end-users of liquidity, the decline in its market

participation is consistent with a partial reduction in gains from trade.

Notably, although volume generated by the uninformed traders declines after the switch to
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continuous trading, toxic volume substantially increases, for a net increase in total volume. This

result highlights an important tension in modern markets. On the one hand, exchange revenues

are volume-dependent, so exchange operators have a preference for market designs that maximize

volume. On the other hand, such designs may not benefit all market participants, potentially

leading to reductions in gains from trade. Consistent with Budish, Lee, and Shim (2020), private-

market incentives may therefore be insufficient to maximize end-user welfare.

The TWSE is one of the world’s 20 largest stock exchanges. Ranked by the U.S. dollar trading

volume, it is comparable (ranked 15th) to such markets as the Toronto Stock Exchange (13th) and

the Australian Securities Exchange (20th). Until recently, the TWSE was the only large market

that used batch auctions as the primary method of matching buyers and sellers. The auctions were

relatively frequent, occurring every five seconds, yet recently the exchange joined its industry

peers in offering continuous market access. Its new continuous trading platform launched on

March 23, 2020.

It is important to acknowledge that the TWSE switched to continuous trading at the onset

of the COVID-19 pandemic, and therefore we must be careful with inferences. Notably, the data

contain clean and sizeable regime shifts on the day of the switch. For instance, Figure 1 shows

that effective spreads, our main trading cost metric, increase sharply on March 23 and stabilize

at the new level thereafter. This pattern alone may allay concerns with the confounding effects;

however, in subsequent analyses we rely on a formal two-pronged approach to mitigate these

concerns even further.

[Figure 1]

First, we use a DID setup with a control sample of stocks trading on the Korean Stock Ex-

change (KRX). The similarities in infection emergence and pandemic responses undertaken by

Taiwan and South Korea allow us to cautiously assert that the DID analysis mitigates the con-

founding effects of the pandemic onset. Second, we use several event window lengths to assess
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the sensitivity of our results to possible pandemic effects. The results are preserved regardless

of event window lengths and their proximity to the March 23 launch date. Taken together, these

analyses give us sufficient confidence that the findings are attributable to the switch to continuous

trading rather than the pandemic. We note that due to the one-event nature of the TWSE switch, a

DID analysis would have been prudent even in the absence of the pandemic. For such an analysis,

the geographic proximity of the two markets and their similar sizes would have made the KRX a

sensible source of controls.

The 21st century has witnessed significant changes in the structure of financial markets. Ex-

changes have largely automated the trading process (Hendershott, Jones, and Menkveld (2011),

Hendershott and Moulton (2011)) and considerably improved matching engine connectivity and

execution speeds (Conrad, Wahal, and Xiang (2015), Brogaard, Hagströmer, Nordén, and Rior-

dan (2015)). Market participants responded to these changes by adopting the latest technology in

a speed race to the exchange engines and between markets (Baron, Brogaard, Hagströmer, and

Kirilenko (2019), Shkilko and Sokolov (2020)). One market structure feature that has however

remained largely unchanged during this time is the continuous limit order book. In it, orders are

fed into the exchange engine one at a time on a first come, first served basis. In the event of two

orders arriving simultaneously, chance determines which is processed first.

Budish, Cramton, and Shim (2015) question this design due to its ability to intensify adverse

selection through the latency arbitrage channel. To understand their reasoning, it helps to think of

a group of N market participants, who have identical speeds, all reacting to the same information.

All N participants may act both as market makers and liquidity takers (snipers). In the former

role, they rush to change their posted quotes in response to news, while in the latter role, they

attempt to pick off the stale quotes of others. Even though everyone’s speeds are the same, chance

dictates that one order will be processed by the exchange engine first. Given that there are N−1

snipers for each stale quote, the odds of being adversely selected, (N−1)/N, are not in favour of

the market maker. In the meantime, a batch auction that accumulates orders for a period of time
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before matching them gives the market maker sufficient time to revise her stale quote before it is

picked off. As long as the auctions are not ultra-frequent, she can do so even if the other traders

are a little faster. Given this advantage, Budish, Cramton, and Shim (2015) propose that market

operators should reduce their reliance on the continuous design.

While Budish, Cramton, and Shim (2015) focus on adverse selection costs, Aït-Sahalia and

Sağlam (2017) examine a different market maker concern – inventory management. In their

model, the market makers’ decisions are characterized by an inventory penalty function, whereby

holding inventory comes at a cost. If the market maker can predict future liquidity demand more

accurately, she may reduce the risk of taking on unwanted inventory and therefore the penalty

cost. Empirical research corroborates this prediction. Brogaard, Hagströmer, Nordén, and Ri-

ordan (2015) find that a better ability to predict incoming order flow is associated with lower

inventory costs, while Shkilko and Sokolov (2020) suggest that exposure to toxic order flow af-

fects this predictive ability negatively. Following this line of reasoning, continuous trading may

have a two-pronged effect on market making costs, by increasing both adverse selection and the

risk of unexpected inventory accumulation.

Our analyses support these expectations. In the DID regression setup, we find that adverse

selection on the TWSE substantially increases after the switch to continuous trading. Realized

spreads too increase consistent with an increase in inventory costs. The total effect is an increase

in effective spreads, our proxy for liquidity costs, and a reduction in displayed liquidity repre-

sented by quoted spreads and depths. The data also show that continuous trading brings mild

improvements in price efficiency, although these results are not always statistically significant,

and their economic magnitude appears secondary to that of the liquidity effects.

Finally, to shed light on the effects of continuous trading on price discovery, we examine the

flow of information into prices. Campbell, Ramadorai, and Schwartz (2009) and Weller (2018)

show that research into firm fundamentals facilitates gradual incorporation of earnings informa-

tion prior to earnings announcements. It is possible that the higher liquidity costs that follow the
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switch to continuous trading negatively affect this process. Alternatively however, the increase in

liquidity costs may not be sufficiently large to affect fundamental research, as its profitability is

likely greater than that of uninformed trading mentioned earlier. The results are consistent with

the latter possibility; we find no changes in the pre-announcement price adjustments. As such,

fundamental information appears to flow into prices at the same pace as before the switch.

To date, the proposal to discretize trading has not gained much traction in the exchange

industry. Only one U.S. market operator, Cboe Global Markets, has recently obtained approval

from the Securities and Exchange Commission (SEC) to implement batch auctions on one of its

smaller equity exchanges, BYX.1 Our results help explain the general reluctance of the industry

to change the status quo. We show that continuous trading comes with an increase in trading

volume, an important revenue driver for modern exchanges. In an industry characterized by high

fixed costs, willfully reducing a revenue source is generally inconsistent with profit maximization.

Notably in this regard, the Cboe plans to preserve the BYX continuous book and to run the

auctions alongside it.

When the BYX periodic auctions launch, it may be of interest to compare their market quality

effects to those obtained for the TWSE. We however caution that the multi-market environment

that characterizes U.S. equity trading may not be ideally suitable for such a comparison. Adding

a batch auction market to the existing continuous markets may result in a clientele migration

and therefore confound market quality inferences. Similar concerns may accompany analyses of

recent introductions of periodic auctions in Europe. Furthermore, it should be noted that European

auction mechanisms are characterized by a limited degree of transparency (e.g., Johann, Putnin, š,

Sagade, and Westheide (2019)) further confounding design comparisons. In the meantime, the

TWSE transition to continuous trading occurs in a market characterised by a high degree of

consolidation and without an accompanying change in transparency.

1“Cboe Receives Regulatory Approval to Launch Periodic Auctions for U.S. Equities Trading," March 29, 2020
(http:/bit.ly/2O6wI61).
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An issue that deserves additional discussion is the external validity of our results. Will the

liquidity effects observed on the TWSE generalize to other markets? We believe that the answer is

largely yes, as the TWSE continuous platform closely resembles (if not fully replicates) those of

the world’s leading exchanges. The switch to continuous trading is the most recent, and perhaps

the last, step in the multi-year process of modernizing the TWSE. In the past decade, the ex-

change invested heavily in platform upgrades and began offering such staples of modern trading

infrastructure as high matching engine throughput, direct access to data feeds, and subscription-

based colocation. All these services were in place prior to our sample period. As such, we are

sufficiently confident that the TWSE is a uniquely suitable laboratory for examining the effects

of moving between continuous trading and frequent batch auctions.

Before moving on, we acknowledge that our results may not generalize to a small group of

ultra-high auction frequencies. Haas, Khapko, and Zoican (2020) argue that at such frequencies

the fastest traders may, as in the continuous market, still have an edge on market makers. Given

modern trading speeds, such auction frequencies likely measure in microseconds or even sub-

microseconds and therefore represent a rather small group of possible designs. In the meantime,

the auction frequencies that are currently under consideration or may be under consideration in

the near future are several orders of magnitude greater than the ultra-high. For instance, the BYX

proposal discussed earlier aims to run the auctions 10 times per second. As such, we believe that

our findings are well-suited to shed light on the effects of switching to the majority of action

frequencies, particularly those under consideration today.

Taken together, our results show that the continuous limit order book design is associated

with greater liquidity costs, which negatively affect market participation by the uninformed in-

vestors. In the meantime, the design benefits exchanges by substantially increasing volume gen-

erated by the short-term informed traders such as latency arbitrageurs. This activity appears to

moderately improve price efficiency. Overall, for these effects to be consistent with welfare max-

imization, society must heavily discount increases in trading costs and value increases in price
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efficiency exceptionally highly. In addition, an abundance of latency arbitrage opportunities en-

courages market participants to engage in a rather costly speed race, devoting large amounts of

capital to shaving micro- or even nanoseconds off information processing and order submission

speeds (Shkilko and Sokolov (2020)). By reducing the number of latency arbitrage opportunities,

frequent batch auctions may allow for capital redeployment to alternative, and potentially more

socially beneficial, uses.

2. Related literature

Theoretical comparisons between the discreet and continuous designs trace back to Kyle

(1985), who shows that a sequence of call auctions, compared to just one auction, may result in

greater losses for the uninformed traders. Madhavan (1992) models informational asymmetries

and shows that they are more severe in the continuous design than in the auction design. More

recently, Budish, Cramton, and Shim (2015) take the design comparison to the modern market-

place characterized by continuous limit order books. They argue that continuous trading comes

with substantial adverse selection and propose to revert back to frequent batch auctions. Budish,

Lee, and Shim (2020) discuss competition between market operators and show that the competi-

tors do not always have the incentives to change market design, even to the one that is more

welfare-enhancing.

Switches from discreet to continuous trading have occurred previously, most recently in the

20th century. Empirical studies examine several such switches and find that they lead to outcomes

different from the ones on the TWSE. Amihud, Mendelson, and Lauterbach (1997), Muscarella

and Piwowar (2001), and Henke and Lauterbach (2005) examine transitions from call auctions to

continuous trading on, respectively, the Tel Aviv Stock Exchange, Paris Bourse, and the Warsaw

Stock Exchange. In all three cases, continuous trading results in liquidity improvements.

A direct comparison between our results and those in the above-mentioned studies is un-
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fortunately impossible, since these studies use relatively coarse data and therefore must rely on

indirect liquidity metrics such as the Amivest ratio or the Roll (1984) measure. This said, we

believe that our results are likely complementary to these early findings, with the difference in

liquidity outcomes arising because of the very infrequent nature of the auctions that they ex-

amine. Before the switch to continuous trading, the auctions in Tel Aviv occur once daily, and

auctions in Paris and Warsaw occur twice daily – quite infrequently compared to the five-second

auctions on the TWSE. We believe that such low auction frequencies may come with substantial

inventory costs, and the reduction in these costs upon the switch to continuous trading may lead

to the overall liquidity improvement.

To elaborate, recall that in our setting the switch to continuous trading has a dual effect;

both adverse selection and inventory costs increase. Although the three above-mentioned studies

are unable to decompose liquidity costs in the same way we do, knowing the frequencies of the

auctions that they examine allows us to hypothesize a possible outcome of such a decomposition.

First, we believe that the adverse selection effects in these three markets could be similar to ours.

As we discuss earlier, all auctions aside from the ultra-frequent should allow market makers to

reprice their quotes in response to news, thereby reducing adverse selection costs. Second, and

more importantly, we posit that the inventory costs may dominate the overall cost of liquidity

provision in low-frequency auctions because such auctions allow for inventory rebalancing only

once or twice a day. As such, even though adverse selection costs in Tel Aviv, Paris, and Warsaw

may have increased upon the switch to continuous trading, the decline in inventory costs could

have eclipsed this effect leading to a net liquidity improvement.

Liquidity cost results consistent with ours have been so far documented only in experimental

markets. Schnitzlein (1996) and Theissen (2000) show that trading costs are lower in an experi-

mental auction environment compared to a continuous environment. Although informative, these

experiments do not perfectly replicate actual markets. To remain tractable, experimental settings

often rely on simplifying features such as restricting participants to submitting only market or-
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ders and assuming that the market is solely quote-driven. Our results complement experimental

evidence in that they apply recent theoretical predictions to a modern high-speed order-driven

market and also, for the first time in the literature, examine the economic magnitude of the ef-

fects that accompany a transition between the two market designs.

In a recent independent study, Riccò and Wang (2020) also investigate the impact of the

TWSE switch to continuous auctions. They too report that the switch is associated with greater

spreads and trading volume, but do not examine what drives these changes. Our study differs

along several dimensions. First, we examine the drivers of the aforementioned liquidity changes,

that is, adverse selection and inventory costs, and tie them to recent theory. Second, we examine

gains from trade and show that they decline at least for some market participants upon the switch

to continuous trading. Finally, we examine price efficiency and price discovery changes that ac-

company the switch. As such, our study provides a comprehensive view of market quality and

welfare implications of continuous trading.

Finally, this study is related to, yet distinct from, research that examines opening and closing

auctions (OCAs). Pagano and Schwartz (2003) and Barclay, Hendershott, and Jones (2008) show

that by consolidating supply and demand at one point in time OCAs allow for more efficient prices

and more accurate price discovery. Ellul, Shin, and Tonks (2005) also find that OCAs benefit

price discovery, but show that they suffer from high failure rates when information asymmetries

are high. Comerton-Forde and Rydge (2006) point out the importance of OCA transparency,

and Pagano, Peng, and Schwartz (2013) study spillover effects of the auctions on continuous

trading sessions that occur during the trading day. In contrast to this stream of research, we study

relatively frequent auctions that occur during the trading day and focus on liquidity as well as

price efficiency and price discovery effects of replacing such auctions with continuous trading.
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3. Data and metrics

3.1 Sample

We collect intraday quote and trade data from the Refinitiv Tick History database, the suc-

cessor to the Thomson Reuters Tick History database. The sample consists of 100 TWSE stocks

with the largest market capitalization. The sample period is from November 2019 through July

2020. To establish a baseline, Table 1 reports summary statistics computed prior to the switch to

continuous trading.

The average sample stock has a market capitalization of 282 billion New Taiwan dollars

(NTD), share price of NTD 182, daily volume of about 9.6 million shares, and daily volatility

of 1.43 bps. We compute volatility as the difference between the highest and lowest daily mid-

points scaled by the average midpoint. The sample covers a broad cross section, with market

capitalizations ranging between NTD 54 billion and 474 billion (respectively, in the 10th and 90th

percentiles), prices ranging between NTD 14.73 and 372.05, and daily volumes – between 0.55

and 23.1 million shares.

[Table 1]

3.2 Liquidity metrics in the continuous regime

Liquidity analyses in continuous markets are quite routine. Meanwhile, liquidity in auction

environments is examined less often, and comparisons between continuous and auction regimes

are even less common. As such, we set out to carefully explain our measurement approach. To

establish a baseline, we begin by describing conventional liquidity metrics for continuous trading

and follow with a discussion of comparable metrics for auctions.

Upon switching to continuous trading, the TWSE begins reporting trade and quote data in a

format that is similar to that of the Trade and Quote Database often used to examine liquidity in
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the U.S. The data contain all intraday activity at the top of the limit order book including trades,

ask and bid quotes, and quoted depths time-stamped to the nearest millisecond. We bunch trade

records that have the same time stamp, trade direction, and price into one trade, as such records

typically reflect a trade initiated by one market participant that executes against several standing

limit orders. As is common, we omit the first and last five minutes of the trading day.

To assess displayed liquidity, we estimate the quoted spread as the difference between the

best offer and the best bid. To measure the number of shares available at displayed prices, we

compute quoted depth as the average of the best quote sizes. To assess trading costs incurred

by liquidity demanders, we compute the effective spread as twice the signed difference between

the traded price and the quote midpoint at the time of the trade. To measure the levels of adverse

selection, we compute the price impact as twice the signed difference between the quote midpoint

at the time of the trade and the midpoint 30 seconds after the trade. Finally, to gauge inventory

costs we follow Brogaard, Hagströmer, Nordén, and Riordan (2015) and use the realized spread,

the difference between the effective spread and price impact.

We drop instances when the best quotes are locked or crossed, that is when the quoted spread

is zero or negative. To sign trades, we rely on the Lee and Ready (1991) algorithm. Chakrabarty,

Pascual, and Shkilko (2015) show that this algorithm performs well in modern markets. All vari-

ables are scaled by the corresponding quote midpoints. In a later section, we show that the results

are robust to varying horizons for price impact and realized spread estimates between 10 and 300

seconds.

3.3 Liquidity metrics in the discrete regime

To describe the data available to us during the auction regime, we begin with a depiction of a

TWSE auction. During the first half of the sample period, the TWSE uses a conventional auction

format similar to that discussed by Budish, Cramton, and Shim (2014). The auction aims to bring

12



security buyers and sellers together at the same time and place and compare their demand and

supply curves. If the curves intersect, the auction succeeds resulting in a trade. If the curves do

not intersect, the auction does not succeed, and no trade takes place.

The auction process consists of two stages: (i) an accumulation stage lasting approximately

five seconds, during which orders are being submitted to the exchange engine, and (ii) a much

shorter allocation stage, during which orders execute. The two stages together take five seconds.

A new accumulation stage begins immediately after the previous allocation stage.

Panel A of Figure 2 contains an example of a successful auction. The buyers seek to pur-

chase a total of 150 shares, of which 20 are sought at NTD 10.00, 50 at NTD 9.99, and so on.

Meanwhile, the sellers seek to sell 50 shares at NTD 10.00, another 50 at NTD 10.01, and so on.

Supply and demand cross at NTD 10.00, and the auction succeeds for 20 shares. In turn, Panel B

contains an example of an unsuccessful auction. This time, the buyers are unwilling to pay more

than NTD 9.99, and the sellers are unwilling to accept less than NTD 10.00. No trade takes place.

[Figure 2]

For auctions that are successful, the TWSE data report three items: (i) the number of shares

traded (that is, 20 shares in Panel A), (ii) the traded price (NTD 10.00), and (iii) the number

of shares available to sell and to buy at the best prices that remain unexecuted (respectively, 30

shares at NTD 10.00 and 50 shares at NTD 9.99). For unsuccessful auctions, the data report only

the above-mentioned item (iii). For the example of an unsuccessful auction in Panel B, the data

will show 50 shares for sale at NTD 10.00 and 70 shares for purchase at NTD 9.99.

Although these auction data do not match continuous data perfectly, they allow us to draw

an informative comparison. To explain our approach, we begin with an example from continuous

markets that makes use of supply and demand curves. In Panel A of Figure 3, outstanding limit

orders result in NTD 9.99 on the bid and 10.00 on the offer. A newly arriving buyer seeking to

purchase 20 shares has a choice to make. First, she may choose to be patient and join the queue
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of bids (Panel B). Second, she may choose to execute quickly and demand liquidity by crossing

the spread (Panel C). If she makes the latter choice, the buyer-initiated trade for 20 shares at NTD

10 will execute, and the limit order book will adjust to the state illustrated in Panel D.

[Figure 3]

In this continuous example, the option to join the queue of bids results in a scenario similar

to the unsuccessful auction in Figure 2. Meanwhile, the option to cross the spread is akin to the

outcome of a successful auction. Given these similarities, we suggest that the prices of unexecuted

buy and sell orders in the auction data may be used as proxies for the best quotes. In both panels

of Figure 2, this reasoning would point to a quoted spread of NTD 0.01 and a quote midpoint of

NTD 9.995.

Although our approach to the auction spread estimation is somewhat novel, it is quite intu-

itive, especially if viewed through the prism of patient vs. impatient trading. Auction participants

may choose to price their orders more or less aggressively. Less aggressively priced orders are

akin to limit orders in continuous markets. They may execute if the opposite side seeks immedi-

acy, otherwise they remain standing. In the meantime, aggressively priced orders resemble mar-

ketable orders in continuous markets as they are sufficiently impatient to cross the gap between

the patient participants.

Having discussed our approach to spread and midquote estimation, we move on to the last

remaining ingredient for trading cost analyses – trade signing. We suggest that methodologies

that are well-established in continuous markets, specifically the Lee-Ready algorithm that bench-

marks against the pre-trade quotes, may also be used for auction trade signing. To explain, we

again rely on an illustration. Table 2 contains a sample of the TWSE auction data. The sample

contains seven consecutive auctions, executing every five seconds. The midquote is stable during

the first six auctions at NTD 297.75 and decreases to NTD 297.25 as the result of the seventh

auction.
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[Table 2]

During auctions 1 through 6, although the midquote is stable, the book is heavy on the ask

side, suggestive of a potential for a price decline. Consistent with this possibility, in all but one

of these auctions trades execute at the bid prices and are therefore likely seller-initiated. The

Lee-Ready algorithm signs them accordingly. Auctions 6 and 7 are noteworthy, because they

precipitate a reduction in the midquote. Auction 6 sees a large seller-initiated trade that consumes

almost all of bid depth at NTD 297.50, creating conditions for a midquote change. Auction 7

achieves this change.

The seventh auction is of particular interest. After auction 6, the book has 21,000 remaining

shares on the bid at NTD 297.50. During auction 7, 38,000 shares execute at this bid price,

suggesting that additional 17,000 shares are added to the bid between auctions 6 and 7. Notably,

the sellers in auction 7 wish to execute more than 38,000 shares at NTD 297.50, namely 49,000

shares. The 11,000 shares that cannot find a buyer at NTD 297.50 remain unexecuted and are

posted as the new ask quote after the allocation stage. This example suggests that benchmarking

against the quotes that result from the previous auction, as is done by the Lee-Ready algorithm,

allows for a rather straightforward signing of trades. Using the quotes remaining after auction 6,

namely 297.50 on the bid and 298.00 on the ask, the algorithm concludes that the trade executed

in auction 7 was initiated by the sellers.

In the robustness section, we examine the sensitivity of our results to the trade signing algo-

rithm by examining alternatives to Lee-Ready. Specifically, we consider the spectrum of possible

trade signing approaches, from the case that assumes that most of price discovery is done through

trades to the case that assumes the opposite – that price discovery is driven by quotes. No matter

the approach, the main results remain intact; adverse selection and trading costs increase after the

switch to continuous trading.

One remaining issue related to liquidity metrics is aggregation. In continuous markets, re-
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searchers usually time-weight quoted spreads and depths when computing daily aggregates.

Time-weighting is however not very informative in the discrete regime when quoted spreads are

reported once per auction, that is once every five seconds. To allow for better comparability, we

equal-weight quoted spreads through the entire sample period. The remaining liquidity metrics

are volume-weighted.

Panel A of Table 3 reports that the average quoted and effective spreads before the switch

to continuous trading are, respectively, 23.41 and 19.12 bps, while price impacts and realized

spreads are 10.84 and 8.27 bps. Quoted depth is about 448 thousand shares, or 4.7% of daily trad-

ing volume. Again, we observe non-trivial variation in the cross-section, with effective spreads

for instance ranging from 10.16 bps in the 10th percentile to 33.89 bps in the 90th percentile, and

realized spreads ranging from 0.04 to 18.74 bps.

[Table 3]

3.4 Price efficiency metrics

In addition to understanding the effects of continuous trading on liquidity costs, we measure

its effects on price efficiency. To measure efficiency, we use two standard metrics: return autocor-

relation as in Hendershott and Jones (2005) and price delay of Hou and Moskowitz (2005). The

former metric relies on the notion that, in a frictionless market, prices should be unpredictable,

and as such midpoint returns should have zero autocorrelation. It is defined as the absolute first

order midpoint return autocorrelation, and we compute it at several frequencies s ∈ {10s, 30s,

60s, 300s}. Smaller autocorrelation estimates suggest greater efficiency.

The latter metric in turn assumes that efficient prices should instantly incorporate public

market information. Accordingly, lagged market returns should have no predictive power for

individual stocks returns. To compute this metric, we begin by running the following regression
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for each stock-day i:

ri,s = αi +βirm,s +
10

∑
k=1

γi,krm,s−k + εi,s, (1)

where ri,s is the quote midpoint return on stock i during time interval s, and rm,s is the return

on TAIEX, Taiwan’s market index. For consistency, we use the same frequencies for s as we

did when computing the autocorrelation metric. We then define the R2 from regression (1) as

unconstrained, R2
u. Next, we estimate regression (1) without the lagged market returns, effectively

constraining γ to zero, and define the corresponding R2 as constrained, R2
c . Finally, for each stock-

day i, we compute:

price delayi = 1− R2
c i

R2
u i
, (2)

which takes values between zero and 1. A smaller delay suggests greater efficiency. Panel B of

Table 3 reports the price efficiency summary statistics. To save space, here and in subsequent

analyses, we report both metrics in two ways: (i) computed at the 60-second frequency and (ii)

aggregated into the first principal component (PC1) across all above-mentioned frequencies. In

the robustness section, we show that our results are robust to varying horizons for both metrics.

3.5 The control sample

The latter part of our 2019-2020 sample period coincides with the COVID-19 pandemic. To

verify that the results are not driven by the pandemic, we use the DID approach. Specifically, we

surmise that the pandemic affected volatility in most equity markets in a similar way. As such, the

true effect of the introduction of continuous trading in Taiwan may be observable if juxtaposed

against a control market. We note that since continuous trading was introduced for all stocks

simultaneously, a DID approach would have been prudent even in the absence of the pandemic.
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As a control market, we use the Korean Stock Exchange (KRX), which is well-suited for this

purpose due to its geographic proximity to the TWSE as well as similar size. Both Taiwan and

Korea faced an onset of COVID-19 cases early in the pandemic and followed similar public health

strategies managing to contain the spread of the virus in the spring of 2020. These similarities

allow us to cautiously claim that region-specific differences in the pandemic onset and response

should not confound the DID results.

To match the TWSE and KRX stocks, we use trading volumes and closing prices converted to

the same currency for comparability. We then compute the matching score of each TWSE sample

stock i and each KRX stock j as:

MSi j =

∣∣∣∣Pi

Pj
−1

∣∣∣∣+ ∣∣∣∣Vi

Vj
−1

∣∣∣∣ , (3)

where P is the daily average closing price, and V is the daily average dollar volume. We then

match, without replacement, each TWSE sample stock with the KRX stock that minimizes the

matching score. In the following sections, we report (i) the simple TWSE-only differences in

market quality variables and (ii) the DID results. The former give us an understanding of the

economic magnitude of changes that follow the switch to continuous trading, and the latter let us

zero in on the effects attributable to the switch itself, controlling for possible global confounders.

In addition to the DID, in subsequent analyses we use pre- and post-event windows that are

sufficiently removed from the month of March to further reduce possible effects of pandemic-

induced global volatility. To this end, our main sample period consists of a three-month pre-

event window (November and December 2019 as well as January 2020) and a three-month post-

event window (May-July 2020). Our results are however generally robust, as we show shortly,

to including the months of February, March and April. As an illustration, Figure 4 plots trading

costs from the main event window for both the TWSE and KRX.2

2As is conventional, we drop trading days when either the TWSE or KRX is closed for a holiday. Given the
Lunar New Year celebrations that occurred in late January 2020 and several other holidays, the pre-event window is
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[Figure 4]

4. Empirical findings

4.1 Adverse selection

Budish, Cramton, and Shim (2015) show theoretically that continuous trading decreases the

ability of liquidity providers to adjust their quotes in response to toxic order flow. As a result,

adverse selection increases. The switch to continuous trading by the TWSE gives us a unique

opportunity to test this prediction. We begin by computing simple pre- and post-event averages

for price impacts, which serve as proxies for adverse selection of liquidity provider quotes. To

avoid the effects of the onset of COVID-19 pandemic, the pre-event window includes November

2019 through January 2020, and the post-event window includes May through July 2020. We

report the results from alternative windows later in this section. The univariate results in Panel A

of Table 4 suggest that adverse selection increases by 27%, from 10.84 bps prior to the switch to

continuous trading to 13.78 bps post-switch.

[Table 4]

These results are consistent with the above-mentioned theoretical predictions, however, their

univariate nature comes with caveats. First, the univariate analysis does not account for the effects

of known adverse selection determinants such as trading volume and volatility. Second, they may

be subject to confounding events, particularly the effects of the COVID-19 pandemic. To examine

the adverse selection effects more formally, we use the following DID regression setup for each

four days shorter than the post-event window.
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stock i on each day t:

price impactit =αi +β1Postt +β2TWSEi +β3Postt×TWSEit +δ1Volumeit (4)

+δ2Volatilityit + εit ,

where Post is an indicator variable that equals to 1 in the post-event period and zero otherwise,

TWSE is an indicator variable that equals to 1 for the TWSE stocks and 0 for the KRX stocks,

Volume is daily trading volume, and Volatility is the difference between the highest and lowest

midpoints scaled by the average midpoint. All continuous variables are winsorized at 1% and

normalized, that is, from each stock-day observation we subtract the sample mean and divide this

difference by the corresponding standard deviation.

The results in Panel B of Table 4 support previously reported univariate findings in that

adverse selection increases upon the switch to continuous trading. In specification 1, the DID

specification without the volume and volatility controls, the interaction coefficient Post×TWSE

indicates that price impacts on the TWSE increase by 0.460 standard deviations compared to the

KRX, a notable 24% increase over the adverse selection levels that are in place during the discrete

regime.3 In specification 2, which controls for volume and volatility, the interaction coefficient

suggests that price impacts increase by 8%.4

We note that although the volatility and volume controls do not reduce statistical significance

of the Post×TWSE coefficient, they reduce its economic magnitude. On the one hand, this may

suggest that some of the increase in adverse selection is attributable to changes in volume and

3To compute the economic significance of regression coefficients, we use standard deviations from the sample
period, for which the coefficients are derived. For instance, the standard deviation for price impacts used to gauge
economic significance in Panel B of Table 4 is 5.68. This estimate is from the November 2019 through January 2020
pre-event window and the May through July 2020 post-event window.

4We note that the Post×TWSE coefficient captures the difference between the post-switch effects on the TWSE
and the KRX. To measure the full economic effect for the TWSE, one should add the coefficients for Post and
Post×TWSE. Given that the Post coefficient in specification 1 is statistically indistinguishable from zero, we base
the economic interpretation on the Post×TWSE coefficient alone. In specification 2, in which the Post coefficient
is significant, we use Post + Post×TWSE.
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volatility, the two known adverse selection determinants. In a subsequent section, we show that

both of these determinants increase upon the switch to continuous trading. On the other hand, the

price impact, volume, and volatility are all subject to the same structural break that occurs on the

day of the switch. As such, the two control variables may mechanically subsume some variation

in price impact. While it is not possible to gauge which of the two effects dominates, we suggest

that the coefficient in specification 2 likely represents the lower bound of the economic effect,

while the coefficient in specification 1 represents the upper bound. In subsequent discussions, we

focus on the lower bound coefficients to remain conservative.

To reduce the effect of volatility associated with the onset of the pandemic, our main event

window contains three pre-event months (November 2019 through January 2020) and three post-

event months (May through July 2020) that are removed from the month of March when it became

clear that the virus had spread around the globe, multiple countries announced lockdowns, and

markets precipitously declined. To confirm that the results are not driven by the event window

choice, we repeat the analyses for two additional periods: (i) the November 2019 through July

2020 period that excludes the month of March and (ii) the entire November 2019 through July

2020 period. The results in Panel C of Table 4 are consistent with those discussed earlier. No

matter which sample period we examine, adverse selection for the TWSE stocks substantially

increases compared to their KRX matches and compared to the discreet trading regime.

4.2 Displayed liquidity and trading costs

Adverse selection is a cost of market making. In competitive markets, changes in this cost

are often relayed to liquidity consumers. With this in mind, we now ask if the increase in adverse

selection post-switch affects the cost of liquidity. To answer this question, we examine two related

metrics – quoted and effective spreads. The former captures displayed liquidity, that is, prices

posted by liquidity providers. The latter accounts for two additional possibilities: (i) that liquidity
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demanders may choose to trade when liquidity is cheaper, and (ii) that they occasionally receive

price improvement over posted prices.

The univariate results in Panel A of Table 5 indicate that quoted spreads increase and quoted

depths decline after the switch to the continuous regime. In Panel B, we confirm these results

in a DID regression setting of equation (4). Compared to the pre-event period and to the KRX

stocks, quoted spreads increase by 0.907 standard deviations, equivalent to 14%. Another notable

change is the 0.380 standard deviations decline in quoted depth, equivalent to 10% of the pre-

switch depth figure.

In Table 6, we expand the DID regression analysis to effective and realized spreads. Effec-

tive spreads, which capture the cost of taking liquidity, increase by 1.149 standard deviations,

equivalent to 21%. Notably, this figure is close to the estimate in Aquilina, Budish, and O’Neill

(2020), who study latency arbitrage races in the continuous limit order book environment and

show that eliminating such races should improve liquidity by about 17%. Next, we turn to the

realized spreads that are a composite metric used to proxy for market maker inventory costs.

Brogaard, Hagströmer, Nordén, and Riordan (2015) and Shkilko and Sokolov (2020) show that

unpredictable order flow such as that generated in the process of latency arbitrage may impede

market maker inventory management. When arbitrageurs pick off stale quotes, market maker in-

ventory may change unexpectedly, requiring additional efforts to balance it. Inventory holding

costs increase as a result. The results corroborate this possibility. Panel B of Table 6 shows that

realized spreads increase by 0.545 standard deviations upon the switch to continuous trading. The

results for the two alternative sample periods in Panel C are consistent with these findings.

[Tables 5 and 6]

Before moving on, it is useful to discuss two issues related to realized spreads. As a residual

metric (the difference between effective spreads and price impacts), realized spreads capture not

only the inventory costs, but also order processing costs and liquidity provider profits. Our dis-
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cussion of this metric has so far focused solely on the inventory costs. We cautiously suggest that

this focus is justified given that it is difficult to think of ways, in which continuous trading would

increase order processing costs per share. If anything, given the greater volumes resulting from

continuous trading and the fact that order processing costs have a non-trivial fixed component,

these costs could have declined.5 When it comes to profits, it is again difficult to think of a sce-

nario, in which these could appreciably change in a competitive market for liquidity provision.

One possibility is that the switch to continuous trading forced some market makers to exit, re-

sulting in a less competitive environment and therefore greater per-share profits. Nevertheless, a

media search and conversations with industry participants do not produce any evidence of market

maker exits as a result of the switch.

4.3 Price efficiency

Modern trading strategies that rely on speed and may benefit from continuous trading often

improve price efficiency (e.g., Brogaard, Hendershott, and Riordan (2014), Chaboud, Chiquoine,

Hjalmarsson, and Vega (2014), Boehmer, Li, and Saar (2018)). While some of these strategies

provide liquidity, others – often referred to as toxic arbitrage – demand it (Foucault, Kozhan,

and Tham (2017)). In the discrete regime, the liquidity-taking strategies may lack profitability,

as market maker quotes are not stale often enough. With the switch to continuous trading, the

profitability of these strategies is likely to increase, and they may proliferate. Our earlier results

are consistent with this possibility, as greater adverse selection is one possible consequence of

such a proliferation. In this light, it is of interest to consider the effect of continuous trading on

price efficiency. On the one hand, during the discrete regime liquidity providers may have already

maintained efficiency at the optimal level by promptly adjusting their quotes. On the other hand,

allowing for greater profitability of liquidity demanding strategies may have given price efficiency

5We formally discuss increases in trading volume shortly.
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a boost. We examine these possibilities by turning to the price efficiency metrics.

Table 7 shows that the effects of continuous trading on price efficiency are somewhat mixed.

First, the autocorrelation metric and the principal component of this metric suggest that price

efficiency improves, with the DID coefficients of -0.181 and -0.056, respectively. It should be

noted that this improvement is economically moderate, between 1.4% and 3.3%. Second, the DID

coefficients for the price delay metric are -0.215 and -0.058, translating to improvements between

0.4% and 2.0%. Notably however, changes in the price delay metric are mostly insignificant when

we vary the estimation window in Panel C, making price delay the only metric so far that does

not show stable results across estimation windows. As such, it appears that continuous trading

moderately improves some, but not all, aspects of price efficiency.

[Table 7]

In light of these results, it may be of interest to contemplate the net effect of continuous

trading. On the one hand, reductions in return autocorrelations, even on the level of 3.3%, benefit

market participants by increasing the probability of trading at the most up-to-date prices. On the

other hand, this benefit comes at a cost to liquidity. Consistent with Foucault and Moinas (2019),

to justify this tradeoff as welfare-enhancing the benefits of relatively small improvements in price

efficiency must be sizeable, and traders must value them exceptionally highly.

4.4 Volatility, volume, and gains from trade

In this section, we seek to better understand the effects of continuous trading on gains from

trade. To proceed, we first outline the links between latency arbitrage, volatility, and trading vol-

ume proposed by recent theoretical and empirical work and then examine these links in our set-

ting. Modeling a market in which liquidity takers generate toxic volume, Roşu (2019) shows that

such volume is associated with increased adverse selection and volatility. Consistent with these

predictions, Shkilko and Sokolov (2020) show empirically that liquidity-taking latency arbitrage
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indeed generates substantial volume, while increasing adverse selection and volatility. In an ear-

lier section, we find that adverse selection increases upon the switch to continuous trading and

relate this increase to the proliferation of latency arbitrage. Given the above-mentioned literature,

it is possible that volatility increases as well. We examine this possibility in Table 8. In the DID

setting, volatility indeed increases by 0.175 standard deviations after the switch (specification 2).

We note that, aside from its standalone significance, this result justifies our use of volatility as a

control in all regression specifications.

[Table 8]

We next turn to the volume effects. The theoretical literature emphasizes the role of liquidity

in promoting welfare. Improved liquidity allows greater numbers of economic agents to come to

the market and benefit from exchanging assets, increasing gains from trade. When liquidity is

costly, some agents (we call them the traditional users or end-users of liquidity) may choose to

stay on the sidelines, and gains from trade are reduced. Since the switch to continuous trading

results in greater liquidity costs, it is possible that some end-users will leave the market, and

trading volume will decline. Still, if the increase in arbitrage activity is substantial, arbitrage

volume may compensate for this decline and even result in a net volume increase.

We begin to examine these possibilities in Table 8. At first glance, the univariate results in

Panel A and the regression results in specification 3 of Panel B suggest that the switch to con-

tinuous trading leads to a volume increase. Notably however, when we control for volatility in

specification 4, the change in volume becomes insignificant. This latter result is noteworthy. In-

sofar as changes in volatility proxy for the proliferation of latency arbitrage discussed by Roşu

(2019) and Shkilko and Sokolov (2020), the latter result is consistent with the notion that contin-

uous trading may not lead to greater gains from trade for the traditional users of liquidity.

To examine this issue further, we focus on trades that generate the least adverse selection. We

reason that if higher post-switch trading costs were to force some end-users out of the market, the
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users affected the most would be those, who are the least informed. For them, market participation

is likely costlier than for those who trade on superior information since trading costs of the

informed traders are offset by greater trading profits. An increase in the cost of trading should

therefore affect the uninformed traders the most. To proxy for the volume generated by such

market participants, we take all trades that have negative price impacts and refer to trading volume

resulting from these trades as low-toxicity volume.

Panel A of Table 9 shows that such volume declines substantially after the switch to continu-

ous trading, from nearly 1.2 to about 0.4 million shares per day. As previously, we next examine

changes in low-toxicity volume in the DID regression setting. Panel B of Table 9 confirms the

univariate findings in that low-toxicity volume declines after the switch to continuous trading. To

reiterate, insofar as low-toxicity volume captures market participation by some of the traditional

users of liquidity, these results point to a possible reduction in gains from trade.

[Table 9]

Two caveats should be noted in light of the above-mentioned results. First, when liquidity

becomes more expensive, the uninformed may switch from demanding to supplying it. If so, even

though they do not initiate as many non-toxic transactions as before, their market participation

may not necessarily decline. Although plausible, this narrative does not easily reconcile with

our earlier results, as such additional liquidity supply should result in tighter spreads and greater

quoted depths – the effects opposite to those we find in the data.

Second, recall that while low-toxicity volume declines, total volume increases (Table 8),

pointing to an increase in toxic volume. So far, we have assumed that latency arbitrage comprises

the lion’s share of toxic volume. An alternative, however, is that toxic volume increases due to

fundamentally informed investors arriving to the market more frequently or choosing to trade

more aggressively. Either way, an increase in their participation may be beneficial for price dis-

covery and as such represent a positive outcome of the switch to continuous trading. Our data are
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not sufficiently detailed to study this possibility directly, as we do not have access to trader ac-

counts, so in what follows we examine indirect evidence on market participation by the informed.

To do so, we rely on the approach used by Weller (2018), who suggests that greater in-

formed investor activity should allow the market to discover more earnings news prior to earnings

announcements. As market participants research firm fundamentals, value-relevant information

flows into prices through their trading. In the case of earnings, the more information is discovered

prior to an announcement, the smaller should be the market reaction to the announcement itself.

To measure this effect, Weller (2018) uses the price jump ratio, PJR, that divides the earnings

announcement return by the total return plausibly attributable to the announcement. The latter in-

cludes three weeks of pre-announcement price changes. A low PJR is consistent with high levels

of price discovery, with a substantial portion of earnings information incorporated into prices in

the weeks prior to the announcement. In our setting, if the presence of fundamentally informed

traders indeed increases after the switch to continuous trading, PJR should decline. To compute

PJR, we follow Weller (2018) and let T be the earnings announcement date. We then define the

announcement window as [T −1,T +2], event window as [T −21,T +2], and pre-event window

as [T − 255,T − 90]. For each day t and each stock i, we compute the close-to-close return, rit ,

and the return on each region’s market index, rmt . We then obtain the abnormal return, abrit , as

the difference between the stock i return on day t and the expected return according to the market

model estimated in the pre-event window, that is,

abrit = rit− α̂i− β̂irmt . (5)

Next, we define cumulative abnormal return as the sum of abnormal returns from t1 to t2,

CAR t1, t2
i =

t2

∑
t=t1

abrit , (6)
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and compute PJR as the ratio of the announcement window CAR and the event window CAR,

PJRi =
CART−1,T+2

i

CART−21,T+2
i

. (7)

One notable implementation issue when computing PJR is that the denominator of the metric

may occasionally be close to zero. To account for this issue, Weller (2018) drops the announce-

ments for which the absolute event-window CAR is smaller than
√

24σi, where σi is the standard

deviation of ri over the preceding month. We do the same.

Table 10 examines PJRs around the switch to continuous trading and reports no evidence of

price discovery improvements. The estimates show that PJRs in Taiwan are relatively close to

one. As such, price discovery mainly occurs close to the announcements. More importantly, there

appears to be no evidence of changes in PJR after the switch to continuous trading. The univariate

results in Panel A and the regression specification 1 in Panel B focus on Taiwan only and report

insignificant changes in PJR. Specification 2 in Panel B adds Korean earnings announcements as

controls and also reports no changes in PJRs, neither in Taiwan (the Post×TWSE coefficient)

nor Korea (the Post coefficient). As such, investors appear to impound the same amount of in-

formation into prices during the auction and continuous regimes. Taken together, these results

are consistent with the notion that the switch to continuous trading affects adverse selection and

liquidity mainly through the latency arbitrage channel rather than the price discovery channel.

All things considered, the data paint a rich picture of changes in market participation. On the

one hand, total volume increases (unconditionally) upon the switch to continuous trading. On the

other hand, the additional volume appears to be generated in large part by latency arbitrageurs,

while volume generated by (some of) the traditional market participants declines. These results

point to a notable dichotomy in the interests of market operators and various investor groups.

Total volume positively affects exchange revenues, which are derived to a great degree from

market access fees paid by traders on a per-share basis. If the TWSE experience is indicative of
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the tradeoffs between discrete and continuous trading in a typical market, it may not be in the

interest of modern market operators to move to the batch auction structure; trading volume may

decline as a result. This logic echoes Budish, Lee, and Shim (2020), who suggest that modern

stock exchanges are unlikely to move away from the status quo of continuous trading without

regulatory encouragement.

4.5 Robustness

For several key variables used in this study, we chose estimation horizons that are commonly

used in the literature. Specifically, we rely on 30-second horizons when we estimate price impacts

and use 60-second horizons for return autocorrelation and price delay metrics. In Panels A and B

of Table 11, we ask if our results are robust to alternative horizons. The data indicate that they are.

In the DID regression specification that uses volume and volatility controls, all above-mentioned

variables remain statistically significant and have similar economic magnitudes to those reported

in the main tables.

[Table 11]

An issue that deserves additional examination is that of trade signing during the auction

regime. In an earlier section, we suggest that the logic of the Lee-Ready algorithm is applicable in

the auction environment. To examine the sensitivity of our main results to this algorithm choice,

we examine two additional approaches to trade signing. The first approach assumes that price

discovery is mainly driven by trades, and the second approach assumes that it is mostly driven by

quotes. As such, the two approaches largely straddle the spectrum of trade signing possibilities.

When working with the first approach, we sign trades based on the price change that follows

them, effectively assuming that every such trade is informed. That is, if a trade is followed by a

price increase (decline), we consider it buyer-initiated (seller-initiated). In the Lee-Ready tradi-

tion, trades not followed by a price change are signed as the trade preceding them. In the second
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approach, we sign trades against the quotes that follow them rather than against the quotes that

precede them. For example, consider a trade at NTD 10.00 that follows the quotes with NTD

9.99 on the bid and 10.00 on the offer and results in new quotes with NTD 10.00 on the bid and

10.01 on the offer. The Lee-Ready algorithm would sign this trade as buyer-initiated, whereas

the second approach discussed here signs it as a seller-initiated, effectively assuming that price

discovery had occurred before the trade was executed.

Panel C of Table 11 shows that no matter how trades are signed, price impacts increase after

the switch to continuous trading. As such, trade signing choices do not affect the qualitative

nature of our main result. Quantitatively, the results are strongest when we assume that auction

price discovery is driven mainly by quotes. This assumption is not without merit given that the

auction environment reduces profitability of latency arbitrage strategies. Notably, our base case

Lee-Ready results are much closer in magnitude to the alternative that assumes trade-driven price

discovery. As such, it may be appropriate to think of the economic magnitudes of price impact

changes reported in the main analysis as relatively conservative.

5. Conclusion

Market structure theory suggests that the continuous limit order book – market design that

dominates modern equity trading – is prone to generating adverse selection. For every market

maker order that may be attempting to change a stale quote, there likely to be multiple liquidity

demanding orders aiming to pick off this quote. Because the continuous limit order book pro-

cesses orders one by one, and even assuming equal speeds by all market participants, the odds

of replacing a stale quote before it is picked off are relatively low. As such, the adverse selection

cost born by market makers is high. To compensate for this cost, spreads are kept wider than they

would be under an alternative design. Frequent batch auctions, in which orders from all market

participants accumulate for a brief period of time before being matched, are often discussed as a
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superior alternative to the status quo.

The empirical literature has not yet examined this issue directly because transitions between

market designs are rare. We examine one such recent transition, whereby a large equity market

– the Taiwan Stock Exchange (TWSE) – moves all of its equity trading from batch auctions to a

continuous book. The data support the above-mentioned theory predictions, in that adverse selec-

tion increases significantly. In addition, market maker inventory costs increase, consistent with

the notion that latency arbitrage complicates inventory management. The total liquidity effect of

the TWSE move is therefore negative; trading costs increase, and displayed liquidity declines.

The increase in trading costs is sufficiently large to affect market participation by some end-

users of liquidity, that is, uninformed investors who come to the market for the purpose of tra-

ditional asset exchange rather than to engage in latency arbitrage. We find that trading volume

generated by such investors declines substantially, potentially reducing gains from trade. Notably,

this decline is more than compensated for by an increase in trading volume generated in the pro-

cess of latency arbitrage. In turn, arbitrage activity comes with moderate improvements in price

efficiency. Finally, the greater trading costs that follow the switch to continuous trading do not

appear to materially affect investors who engage in fundamental price discovery. Proxied for by

information incorporation into prices prior to earnings announcements, market participation by

these investors does not change.

Our results offer new empirical evidence to the ongoing debate about the costs and benefits of

market design alternatives. On the one hand, the adverse selection cost embedded in the contin-

uous design may be reduced by switching to frequent batch auctions benefiting the end-users of

liquidity. On the other hand, the continuous design comes with greater trading volumes boosted

by arbitrage activity benefiting the exchanges. Given the high fixed costs of running an exchange,

it is unlikely that market operators will willingly change the status quo, especially if the change

may reduce trading volumes. In the meantime, it appears that for the continuous order book de-

sign to be welfare-improving, the end consumers of liquidity must heavily discount increases in
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trading costs and put a substantial premium on moderate improvements in price efficiency.
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Table 1
Sample Characteristics

The table reports summary statistics for 100 Taiwan Stock Exchange (TWSE) stocks used in the sample. To establish
a baseline, and for comparability with the main regression setup, the statistics are computed during a period prior
to the switch to continuous trading: November 2019 through January 2020. Market cap. is market capitalization
computed as the product of the number of shares outstanding and the share price. Price is the daily closing price
in New Taiwan dollars (NTD). Number of trades and Volume are daily averages, and Volatility is computed for
each stock-day as the difference between the highest and lowest midpoints scaled by the average midpoint. Quote
midpoint is the average between the TWSE best bid and best offer prices.

Mean Median Std. Dev. 10th 90th

Market cap., NTD million 282,447 118,614 840,716 54,028 474,412
Price, NTD 181.92 67.65 491.58 14.73 372.05
Number of trades 1,076 972 622 305 1,920
Volume, share thousand 9,550 4,840 16,294 553 23,116
Volatility, bps. 1.43 1.23 0.83 0.52 2.74

37



Table 2
Auction Data: A Sample

The table contains a sample of the TWSE auction data for seven consecutive auctions. For each auction, the data
report the allocation price, volume, as well as the bid/ask prices and sizes arising after the allocation stage. For each
pair of bid and ask quotes, we compute the quote midpoint and assign trade direction in the spirit of the Lee and
Ready (1991) algorithm. That is, we compare the auction allocation price to the quotes resulting from the previous
auction and assign trades executing at the bid (ask) as seller-initiated (buyer-initiated). Trades executed at the quote
midpoint are assigned direction based on the sign of the previous trade.

Auction Price Volume Bid Bid depth Ask Ask depth Midquote Trade sign

1 297.50 2,000 297.50 373,000 298.00 2,314,000 297.75 N/A
2 297.50 3,000 297.50 370,000 298.00 2,318,000 297.75 -
3 298.00 1,000 297.50 376,000 298.00 2,124,000 297.75 +
4 297.50 8,000 297.50 371,000 298.00 2,112,000 297.75 -
5 297.50 1,000 297.50 376,000 298.00 2,086,000 297.75 -
6 297.50 356,000 297.50 21,000 298.00 2,084,000 297.75 -
7 297.50 38,000 297.00 919,000 297.50 11,000 297.25 -
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Table 3
Liquidity and Price Efficiency Statistics

The table reports liquidity and price efficiency statistics for 100 Taiwan Stock Exchange (TWSE) stocks used in the
sample. To establish a baseline, and for comparability with the main regression setup, the statistics are computed
during a period prior to the switch to continuous trading: November 2019 through January 2020. Panel A reports
statistics for liquidity costs. Quoted spread is the difference between the best offer and the best bid. Quoted depth
is the average of the best bid and best ask quote sizes. Effective spread is twice the signed difference between the
traded price and the quote midpoint immediately preceding the trade. Price impact is twice the signed difference
between the quote midpoint immediately preceding the trade and the midpoint 30 seconds after the trade. Realized
spread is the difference between the effective spread and price impact. To sign trades, we use the Lee and Ready
(1991) algorithm. All statistics other than the quoted depths are scaled by the contemporaneous quote midpoints.
Quoted spreads and depths are equally-weighted, and all remaining liquidity metrics are volume-weighted. Panel B
reports two price efficiency metrics: return autocorrelation and price delay. Return autocorrelation is defined as the
absolute first order midpoint return autocorrelation computed at the 60-second frequency. In addition, we report the
first principal component (PC1) for several estimation frequencies: 10s, 30s, 60, and 300s. Price delay is computed
by comparing R2s from two regressions of stock returns on market returns (equation (1)). The first (unconstrained)
regression allows for several lags of market returns, while the second (constrained) model does not allow for lagged
market returns (Section 3 contains estimation details). The two R2s are then compared to compute the price delay
metric as per equation (2). We report the results estimated using the 60-second frequency, and the first principal
component of price delays estimated at 10-, 30-, 60-, and 300-second frequencies.

Mean Median Std. Dev. 10th 90th

Panel A: Displayed liquidity and trading costs

Quoted spread, bps. 23.41 20.44 10.94 12.09 39.93
Quoted depth, share thousand 447.5 92.7 928.2 8.1 943.9
Effective spread, bps. 19.12 15.63 9.33 10.16 33.89
Price impact, bps. 10.84 9.62 5.46 5.09 19.00
Realized spread, bps. 8.27 6.10 8.15 0.04 18.74

Panel B: Price efficiency metrics

Return autocorrelation (60s) 0.11 0.11 0.02 0.08 0.14
Return autocorrelation (PC1) 0.33 0.33 0.09 0.23 0.42
Price delay (60s) 0.08 0.06 0.08 0.00 0.19
Price delay (PC1) 0.77 0.86 0.04 0.81 0.89
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Table 4
Adverse Selection

The table examines changes in adverse selection of liquidity providers (proxied by the price impacts) around the
move to continuous trading. The treatment sample consists of 100 largest TWSE stocks, and the control group is 100
matched KRX stocks. The sample period spans November 1, 2019 to July 30, 2020. To avoid the effects of the onset
of COVID-19 pandemic, in Panels A and B, the pre-event window includes November 2019 through January 2020,
and the post-event window includes May through July 2020. Panel C examines alternative event windows. Panel
A contains univariate results for the TWSE stocks. Panels B and C report the results of a difference-in-differences
(DID) regression of the following form:

price impactit = αi +β1Postt +β2TWSEi +β3Postt ×TWSEit +δ1Volumeit +δ2Volatilityit + εit ,

where Post is an indicator variable that equals to 1 for the post-event period and zero otherwise; TWSE is an indicator
variable that equals to 1 for the TWSE stocks and 0 for the KRX stocks; Volume is daily trading volume in stock i on
day t; and Volatility is the difference between the highest and lowest midpoints scaled by the average midpoint. All
continuous variables are winsorized at 1% and normalized, that is, from each stock-day observation we subtract the
sample mean and divide this difference by the corresponding standard deviation. White-robust standard errors are in
parentheses. *** indicates statistical significance at the 1% level.

[1] [2]

Panel A: Univariate results

Pre 10.84
Post 13.78 ***

Panel B: Regression results

Post 0.010 -0.074 ***
(0.04) (0.02)

TWSE -0.240 *** -0.121 ***
(0.04) (0.02)

Post×TWSE 0.460 *** 0.235 ***
(0.05) (0.03)

Volume -0.038 ***
(0.02)

Volatility 0.570 ***
(0.02)

Incercept -0.002 0.033
(0.04) (0.03)

Adj. R2 0.028 0.310
Obs. 24,144 24,144

Panel C: Regression: alternative sample periods

Post×TWSE: excluding March 0.320 *** 0.143 ***
(0.06) (0.04)

Post×TWSE: full sample 0.280 *** 0.177 ***
(0.05) (0.04)
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Table 5
Displayed Liquidity

The table examines changes in quoted spread and depth around the move to continuous trading. The treatment sample
consists of 100 largest TWSE stocks, and the control group is 100 matched KRX stocks. The sample period spans
November 1, 2019 to July 30, 2020. To avoid the effects of the onset of COVID-19 pandemic, in Panels A and B the
pre-event window includes November 2019 through January 2020, and the post-event window includes May through
July 2020. Panel C examines alternative event windows. Panel A contains univariate results for the TWSE stocks.
Panels B and C report the results of a DID regression of the following form:

DepVarit = αi +β1Postt +β2TWSEi +β3Postt ×TWSEit +δ1Volumeit +δ2Volatilityit + εit ,

where DepVar is the quoted spread or quoted depth, Post is an indicator variable that equals to 1 for the post-event
period and zero otherwise; TWSE is an indicator variable that equals to 1 for the TWSE stocks and 0 for the KRX
stocks; Volume is daily trading volume in stock i on day t; and Volatility is the difference between the highest and
lowest midpoints scaled by the average midpoint. All continuous variables are winsorized at 1% and normalized, that
is, from each stock-day observation we subtract the sample mean and divide this difference by the corresponding
standard deviation. White-robust standard deviations are in parentheses. *** and ** indicate statistical significance
at the 1% and 5% levels.

Quoted spread Quoted depth

[1] [2] [3] [4]

Panel A: Univariate results

Pre 23.41 447.5
Post 25.74 *** 322.4 ***

Panel B: Regression results

Post -0.076 ** -0.045 0.224 *** 0.153 ***
(0.04) (0.04) (0.05) (0.04)

TWSE -0.468 *** -0.471 *** 0.190 *** 0.194 ***
(0.03) (0.03) (0.04) (0.03)

Post×TWSE 0.901 *** 0.907 *** -0.375 *** -0.380 ***
(0.06) (0.05) (0.06) (0.05)

Volume -0.267 *** 0.636 ***
(0.02) (0.02)

Volatility 0.178 *** -0.444 ***
(0.02) (0.01)

Intercept 0.070 0.042 -0.016 *** -0.096 ***
(0.05) (0.04) (0.04) (0.03)

Adj. R2 0.086 0.119 0.01 0.201
Obs. 24,144 24,144 24,144 24,144

Panel C: Regression: alternative sample periods

Post×TWSE: excluding March 0.799 *** 0.820 *** -0.358 *** -0.419 ***
(0.05) (0.04) (0.06) (0.04)

Post×TWSE: full sample 0.751 *** 0.703 *** -0.363 *** -0.323 ***
(0.04) (0.03) (0.05) (0.04)
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Table 6
Trading Costs

The table examines changes in effective and realized spreads around the move to continuous trading. The treatment
sample consists of 100 largest TWSE stocks, and the control group is 100 matched KRX stocks. The sample period
spans November 1, 2019 to July 30, 2020. To avoid the effects of the onset of COVID-19 pandemic, in Panels A and
B the pre-event window includes November 2019 through January 2020, and the post-event window includes May
through July 2020. Panel C examines alternative event windows. Panel A contains univariate results for the TWSE
stocks. Panels B and C report the results of a DID regression of the following form:

DepVarit = αi +β1Postt +β2TWSEi +β3Postt ×TWSEit +δ1Volumeit +δ2Volatilityit + εit ,

where DepVar is the effective or realized spread, Post is an indicator variable that equals to 1 for the post-event
period and zero otherwise; TWSE is an indicator variable that equals to 1 for the TWSE stocks and 0 for the KRX
stocks; Volume is daily trading volume in stock i on day t; and Volatility is the difference between the highest and
lowest midpoints scaled by the average midpoint. All continuous variables are winsorized at 1% and normalized, that
is, from each stock-day observation we subtract the sample mean and divide this difference by the corresponding
standard deviation. White-robust standard deviations are in parentheses. *** and ** indicate statistical significance
at the 1% and 5% levels.

Effective spread Realized spread

[1] [2] [3] [4]

Panel A: Univariate results

Pre 19.12 8.27
Post 23.01 *** 9.23 ***

Panel B: Regression results

Post -0.095 *** -0.087 ** -0.187 *** -0.100 ***
(0.04) (0.04) (0.03) (0.02)

TWSE -0.609 *** -0.596 *** -0.172 *** -0.281 ***
(0.03) (0.03) (0.03) (0.02)

Post×TWSE 1.175 *** 1.149 *** 0.341 *** 0.545 ***
(0.05) (0.04) (0.04) (0.04)

Volume -0.160 *** -0.066 ***
(0.01) (0.01)

Volatility 0.176 *** -0.442 ***
(0.02) (0.02)

Intercept 0.045 0.033 0.089 *** 0.047
(0.04) (0.04) (0.03) (0.03)

Adj. R2 0.147 0.162 0.007 0.238
Obs. 24,144 24,144 24,144 24,144

Panel C: Regression: alternative sample periods

Post×TWSE: excluding March 1.083 *** 1.072 *** 0.422 *** 0.595 ***
(0.04) (0.04) (0.04) (0.03)

Post×TWSE: full sample 0.933 *** 0.885 *** 0.491 *** 0.562 ***
(0.04) (0.03) (0.04) (0.03)
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Table 7
Price Efficiency

The table examines changes in return autocorrelation and price delay metrics around the move to continuous trading.
The treatment sample consists of 100 largest TWSE stocks, and the control group is 100 matched KRX stocks. The
sample period spans November 1, 2019 to July 30, 2020. To avoid the effects of the onset of COVID-19 pandemic, in
Panels A and B, the pre-event window includes November 2019 through January 2020, and the post-event window
includes May through July 2020. Panel C examines alternative event windows. Panel A contains univarate results.
Panels B and C report results from a DID regression of the following form:

DepVarit = αi +β1Postt +β2TWSEi +β3Postt ×TWSEit +δ1Volumeit +δ2Volatilityit + εit ,

where DepVar are the autocorrelation and delay metrics for the 60-second intervals and the first principal compo-
nents (PC1) of these metrics computed for 10-, 30-, 60-, and 300-second intervals, Post is an indicator variable that
equals to 1 for the post-event period and zero otherwise; TWSE is an indicator variable that equals to 1 for the TWSE
stocks and 0 for the KRX stocks; Volume is daily trading volume in stock i on day t; and Volatility is the difference
between the highest and lowest midpoints scaled by the average midpoint. All continuous variables are winsorized at
1% and normalized, that is, from each stock-day observation we subtract the sample mean and divide this difference
by the corresponding standard deviation. White-robust standard deviations are in parentheses. *** indicate statistical
significance at the 1% level.

Return autocorrelation Price delay

60s PC1 60s PC1

[1] [2] [3] [4]

Panel A: Univariate results

Pre 0.112 0.329 0.850 0.767
Post 0.095 *** 0.287 *** 0.704 *** 0.684 ***

Panel B: Regression results

Post 0.030 0.023 *** -0.329 *** -0.076 ***
(0.02) (0.01) (0.04) (0.01)

TWSE 0.044 -0.032 *** 0.158 *** 0.029 ***
(0.02) (0.01) (0.03) (0.01)

Post×TWSE -0.181 *** -0.056 *** -0.215 *** -0.058 ***
(0.03) (0.01) (0.06) (0.02)

Volume -0.036 *** 0.002 0.074 *** 0.020 ***
(0.01) (0.00) (0.01) (0.00)

Volatility -0.083 *** -0.027 *** -0.112 *** -0.032 ***
(0.01) (0.00) (0.02) (0.01)

Intercept 0.011 0.351 *** 0.287 *** 0.806 ***
(0.02) (0.00) (0.04) (0.01)

Adj. R2 0.014 0.038 0.069 0.086
Obs. 24,144 23,353 23,149 23,950

Panel C: Regression: alternative sample periods

Post×TWSE: excluding March -0.179 *** -0.050 *** -0.154 *** -0.031
(0.03) (0.01) (0.06) (0.02)

Post×TWSE: full sample -0.184 *** -0.051 *** -0.051 -0.010
(0.03) (0.01) (0.06) (0.02)
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Table 8
Volatility and Volume

The table examines changes in volume and volatility around the move to continuous trading. The treatment sample
consists of 100 largest TWSE stocks, and the control group is 100 matched KRX stocks. The sample period spans
November 1, 2019 to July 30, 2020. To avoid the effects of the onset of COVID-19 pandemic, in Panels A and B, the
pre-event window includes November 2019 through January 2020, and the post-event window includes May through
July 2020. Panel C examines alternative event windows. Panel A contains univariate results. Panels B and C report
the results of a pooled DID regression of the following form:

DepVarit = αi +β1Postt +β2TWSEi +β3Postt ×TWSEit +δ1Volumeit +δ2Volatilityit + εit ,

where DepVar is trading volume or volatility, Post is an indicator variable that equals to 1 for the post-event period
and zero otherwise; TWSE is an indicator variable that equals to 1 for the TWSE stocks and 0 for the KRX stocks;
Volume is daily trading volume in stock i on day t; and Volatility the difference between the highest and lowest
midpoints scaled by the average midpoint. All continuous variables are winsorized at 1% and normalized, that
is, from each stock-day observation we subtract the sample mean and divide this difference by the corresponding
standard deviation. White-robust standard errors are in parentheses. *** indicates statistical significance at the 1%
level.

Volatility Volume

[1] [2] [3] [4]

Panel A: Univariate results

Pre 1.43 9,551
Post 1.96 *** 11,795 ***

Panel B: Regression results

Post 0.116 *** -0.125 *** 0.433 *** 0.331 ***
(0.04) (0.03) (0.05) (0.04)

TWSE -0.160 *** -0.113 *** -0.090 0.053
(0.03) (0.02) (0.06) (0.04)

Post×TWSE 0.290 *** 0.175 *** 0.210 *** -0.044
(0.05) (0.04) (0.07) (0.06)

Volume 0.557 ***
(0.01)

Volatility 0.879 ***
(0.02)

Intercept -0.285 *** -0.052 -0.418 *** -0.167 ***
(0.04) (0.04) (0.05) (0.04)

Adj. R2 0.036 0.508 0.074 0.527
Obs. 24,144 24,144 21,144 21,144

Panel C: Regression: alternative sample periods

Post×TWSE: excluding March 0.240 *** 0.123 *** 0.200 *** 0.009
(0.05) (0.04) (0.07) (0.05)

Post×TWSE: full sample 0.170 *** 0.118 *** 0.080 -0.036
(0.06) (0.04) (0.07) (0.05)
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Table 9
Low-Toxicity Volume

The table examines changes in low-toxicity volume around the move to continuous trading. We define such volume
as originating from trades, whose price impacts are negative and use low-toxicity volume to proxy for market par-
ticipation by the uninformed users of liquidity (the end-users). The treatment sample consists of 100 largest TWSE
stocks, and the control group is 100 matched KRX stocks. The sample period spans November 1, 2019 to July 30,
2020. To avoid the effects of the onset of COVID-19 pandemic, in Panels A and B, the pre-event window includes
November 2019 through January 2020, and the post-event window includes May through July 2020. Panel C exam-
ines alternative event windows. Panel A contains univariate results. Panels B and C report the results of a pooled
DID regression of the following form:

DepVarit = αi +β1Postt +β2TWSEi +β3Postt ×TWSEit +δ1Volatilityit + εit ,

where DepVar is low-toxicity volume, Post is an indicator variable that equals to 1 for the post-event period and
zero otherwise, TWSE is an indicator variable that equals to 1 for the TWSE stocks and 0 for the KRX stocks, and
Volatility the difference between the highest and lowest midpoints scaled by the average midpoint. All continuous
variables are winsorized at 1% and normalized, that is, from each stock-day observation we subtract the sample mean
and divide this difference by the corresponding standard deviation. White-robust standard errors are in parentheses.
*** and ** indicate statistical significance at the 1% and 5% levels.

[1] [2]

Panel A: Univariate results

Pre 1,179
Post 392 ***

Panel B: Regression results

Post 0.239 *** 0.014 ***
(-0.03) (0.03)

TWSE 0.430 *** 0.565 **
(0.04) (0.03)

Post×TWSE -0.840 *** -1.092 ***
(0.05) (0.04)

Volatility 0.603 ***
(0.02)

Intercept -0.147 *** -0.104 ***
(0.03) (0.03)

Adj. R2 0.053 0.400
Obs. 24144 24,144

Panel C: Regression: alternative sample periods

Post×TWSE: excluding March -0.079 *** -0.988 ***
(0.04) (0.04)

Post×TWSE: full sample -0.840 *** -0.941 ***
(0.07) (0.06)
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Table 10
Informed Trading Around Earnings Announcements

The table examines changes in the way earnings news are incorporated into prices around the move to continuous
trading. The main metric is the price jump ratio, PJR, computed as return immediately surrounding an earnings
announcement divided by return that includes three weeks preceding the announcement,

PJRi =
CART−1,T+2

i

CART−21,T+2
i

,

where CART−1,T+2
i is the cumulative market-adjusted return for the announcement i from day T − 1 to day T + 2,

with T being the announcement date, and CART−21,T+2
i is the same metric computed from day T −21 to day T +2.

The intuition is based on Weller (2018), who posits that informed investors will impound earnings information into
prices prior to the announcement if the trading environment is conducive to such activity. The treatment sample
consists of 100 largest TWSE stocks, and the control group is 100 matched KRX stocks. We caution that not all
sample stocks have earnings announcements during the sample period, and as such this test is not as balanced as
those reported in the previous tables. The sample period spans November 1, 2019 to July 30, 2020. Panel A contains
univariate results. Panel B reports the results of a pooled DID regression of the following form:

PJRit = αi +β1Postt +β2TWSEi +β3Postt ×TWSEit + εit ,

where PJR is the jump ratio, Post is an indicator variable that equals to 1 in the post-switch period and zero otherwise,
and TWSE is an indicator variable that equals to 1 for the TWSE stocks and 0 for the KRX stocks. White-robust
standard errors are in parentheses. *** indicates statistical significance at the 1% level.

TWSE only TWSE & KRX

[1] [2]

Panel A: Univariate results

Pre 0.91
Post 0.93

Panel B: Regression results

Post 0.028 -0.374
(0.23) (0.25)

TWSE -0.011
(0.26)

Post×TWSE 0.402
(0.34)

Intercept 0.907 *** 0.918 ***
(0.12) (0.23)

Adj. R2 0.010 0.060
Obs. 181 239
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Table 11
Robustness

The table contains regression results for price impacts and price efficiency metrics estimated at various horizons and
across the spectrum of trade classification. For price impacts, we use 10, 15, 60, and 300-second horizons (Panel A)
and for the price efficiency metrics – 10, 30, and 300-second horizons (Panel B). To examine the trade classification
spectrum, in Panel C we report two opposite approaches for trade signing that assume that price discovery is driven
either mainly by trades or mainly by quotes. The former approach signs trades based on the midquote change that
follows them. That is, trades that are followed by price increases (declines) are considered buyer-initiated (seller-
initiated). In turn, the latter approach uses post-trade quotes instead of the pre-trade quotes to sign trades, effectively
assuming that quotes lead price discovery. For comparison to the findings reported throughout the paper, we also
report the result from the Lee-Ready classification (the base case). The treatment sample consists of 100 largest
TWSE stocks, and the control group is 100 matched KRX stocks. The sample period spans November 1, 2019 to
July 30, 2020. To avoid the effects of the onset of COVID-19 pandemic, the pre-event window includes November
2019 through January 2020, and the post-event window includes May through July 2020. The table reports the
coefficient estimates on the Postt ×TWSEit variable from a DID regression of the following form:

DepVarit = αi +β1Postt +β2TWSEi +β3Postt ×TWSEit +δ1Volumeit +δ2Volatilityit + εit ,

where DepVar are the price impact, autocorrelation, and price delay metrics, Post is an indicator variable that equals
to 1 for the post-event period and zero otherwise; TWSE is an indicator variable that equals to 1 for the TWSE
stocks and 0 for the KRX stocks; Volume is daily trading volume in stock i on day t; and Volatility is the difference
between the highest and lowest midpoints scaled by the average midpoint. All continuous variables are winsorized at
1% and normalized, that is, from each stock-day observation we subtract the sample mean and divide this difference
by the corresponding standard deviation. White-robust standard deviations are in parentheses. *** indicate statistical
significance at the 1% level.

Panel A: Price impact horizons

10 seconds 15 seconds 60 seconds 300 seconds

Price impact 0.420 *** 0.304 *** 0.269 *** 0.313 ***
(0.04) (0.03) (0.03) (0.04)

Panel B: Price efficiency

10 seconds 30 seconds 300 seconds

Autocorrelation -0.093 *** -0.222 *** -0.095 ***
(0.04) (0.03) (0.04)

Price delay -0.161 *** -0.217 *** -0.242 ***
(0.05) (0.08) (0.08)

Panel C: Price impacts across the trade classification spectrum

Price discovery occurs mainly Base case

via trades via quotes (Lee-Ready)

Price impact 0.159 *** 1.386 *** 0.235 ***
(0.04) (0.03) (0.03)
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Figure 1
Trading costs around the switch to continuous trading

The figure plots the effective spreads, our proxy for trading costs, from November 2019 through July
2020. The sample consists of 100 largest TWSE stocks. Effective spread is the signed difference between
the trade price and the corresponding quote midpoint, scaled by the midpoint. We use the Lee and Ready
(1991) algorithm to sign trades. In Section 3, we discuss assumptions required to compute effective spreads
in the auction environment. For aggregation, effective spreads are first volume-weighted within each stock-
day and then averaged across stocks for each day.
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Figure 2
An auction market example

The figure plots examples of a successful and an unsuccessful auctions. In Panel A, the auctions succeeds
as demand and supply cross at NTD 10.00 for 20 shares. In Panel B, the auction does not succeed, as the
buyers are unwilling to pay more than NTD 9.99, while the sellers are unwilling to accept less than NTD
10.00.
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Figure 3
A continuous market example

The figure plots an example of trading in a continuous market for comparison with the auction market
example in Figure 2. In Panel A, we plot supply and demand represented by resting limit orders. In Panel
B, we illustrate the change in demand caused by a submission of an additional limit order to buy 20 shares
at NTD 9.99. Panel C presents an alternative scenario, whereby the 20-share order to buy is marketable,
and supply and demand cross resulting in a 20-share buyer-initiated trade at NTD 10.00. Finally, in Panel
D we plot the state of supply and demand after the 20-share marketable order executes.
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Figure 4
TWSE and KRX trading costs during the main sample period

The figure plots the TWSE effective spreads (solid line) and the KRX effective spreads (dashed line) during
the main event window spanning November and December 2019 and January 2020 in the pre-event period
and May-July 2020 in the post-event period. The sample consists of 100 largest TWSE stocks and their
KRX matches. Effective spread is the signed difference between the trade price and the corresponding
quote midpoint, scaled by the midpoint. As is conventional, we drop trading days when either the TWSE
or KRX is closed for a holiday. Given the Lunar New Year celebrations in late January 2020 and several
other holidays, the pre-event window is four days shorter than the post-event window.
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