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Abstract

There is strong heterogeneity in the permanent price impact of traders. Moreover, a trader’s perma-

nent price impact is persistent. A trade’s ex-post permanent price impact is partially priced in dealers’

markups, even when controlling for dealer-client fixed effects. This suggests that dealers are informed

about the permanent price impact of their clients’ trades. We present further evidence suggesting that

dealers learn from their clients’ order flow and use this knowledge when providing quotes. More informed

customers are more likely to trade with informed dealers. We present a model explaining our empirical

findings.

1 Introduction

The two-tiered market structure, where clients’ trades are intermediated by dealers who can trade amongst

each other in an interdealer market, remains prevalent in many OTC markets including fixed income, credit,

and foreign exchange. In theory, such a structure may naturally arise if clients are differentially informed,

and can signal their type to dealers who can price-discriminate (Seppi (1990), Lee and Wang (2019)). More

recently, Glode and Opp (2016, 2019) argue that, in the presence of asymmetric information, intermediation

chains may be needed to generate efficient trading behavior. A property of these intermediation chains is

that trades are expected to occur between counterparties that are similarly informed. In practice however,

it is less clear how these efficient intermediation chains can arise1 and whether we can empirically observe

that trading relationships are, at least to some extent, determined by informedness of the different traders.

∗Pierre Collin-Dufresne is at EPFL and the Swiss Finance Institute (email: pierre.collin-dufresne@epfl.ch). Peter Hoffmann
is at the European Central Bank (email: peter.hoffmann@ecb.int). Sebastian Vogel is at EPFL and the Swiss Finance Institute
(email: sebastian.vogel@epfl.ch). We gratefully acknowledge the financial support of the European Central Bank and the
European Systemic Risk Board through the EMIR Bridge Programme. The views expressed in this paper are those of the
authors and do not necessarily represent the views of the institutions to which they are affiliated.

1Glode and Opp (2016, 2019) consider the case in which the trading network is held fixed. If this would not be the case,
informed traders had incentives to choose less informed counterparties.
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In this paper we use data on foreign exchange transactions made available through the European Market

Infrastructure Regulation (EMIR) to shed new light on the functioning of one of the largest OTC markets: the

euro-dollar forward exchange rate market. This market is largely two-tiered in that most client transactions

occur with a limited set of dealers and there is a very active interdealer market. Since the data set contains

all the individual transactions in the EU with information on trader identities, we can ask the following

questions. Is there evidence that clients are differentially informed? Is there evidence that dealers are

differentially informed? Are markups charged by dealers related to client and/or dealer informedness? Are

the client-to-dealer (and dealer-to-dealer) trading networks affected by these differences in informedness?

To answer the first question, we measure price impact of individual clients’ trades at different horizons

(1-minute, 30-minutes, 1-day). A positive price impact implies that clients tend to buy (sell) from the dealer

when benchmark rates increase (decrease) subsequent to their trade. Such situation should arise if clients are

on average better informed than dealers about future exchange rate changes. This is the standard adverse

selection mechanism presented in the traditional microstructure literature (e.g., Kyle (1985) and Glosten

and Milgrom (1985)). Of course, it is perhaps less intuitive to think that clients have private information

about future exchange rate fundamentals, which we typically think of as reflecting macro-economic risks.

However, as we show in a simple theoretical model, clients information may pertain to their individual

order flow, which may be correlated with total order flow, which in the short run may affect the change in

exchange rates (see also Evans and Lyons (2002, 2005)). Alternatively, some investors may also be better

at interpreting public news, say about macroeconomic fundamentals, and thus effectively also have private

information about systematic sources of risk (e.g., Kim and Verrecchia (1991)). Empirically, we find that on

average clients’ price impact is highly statistically significant and positive at a 1-minute horizon. At a longer

(1-day) horizon it remains highly statistically significant and positive for hedge funds on average. However,

there is considerable cross-sectional and time-series variation across traders. When we look at the individual

trader level, we find significant persistence in price impact. Breaking down the sample into subperiods,

we find that traders that tend to have a higher price impact in the first subperiod tend to remain in the

high-price impact group in subsequent periods. This suggests that some (groups of) traders are consistently

better informed, in that their trades seem to, on average, correctly anticipate future exchange rate changes.

At some level, these findings are consistent with the original findings of Evans and Lyons (2002), who

documented, using 4 months of data in 1996, that it was possible to predict future exchange rate changes

based on aggregate interdealer order flow. Since, as we show in our theoretical model, one would expect the

interdealer order flow to be driven by their clients’ order flow, it seems natural to anticipate that there should

2



be some information in at least some of the clients’ trades. We confirm this intuition by extending the Evans

and Lyons (2002) study to the individual dealer level. Specifically, we investigate whether the aggregated

clients’ order imbalance observed by each dealer allows them to predict future exchange rate movements. We

find strong evidence of predictability at the dealer level. That is, individual dealers could earn significant

Sharpe ratios from trading based on their clients aggregated order flow. However, there is also substantial

cross-sectional variation across dealers. We label the dealers with the highest predictive client order flow,

the ‘informed dealers,’ and we study the characteristics of these dealers and whether we see specific patterns

in the client-dealer trading network. Interestingly, we find that dealer informedness is not isomorphic to the

standard centrality measures such as connectedness. We find that more informed dealers indeed use their

information when giving quotes to traders. Markups are generally higher, the higher the price impact of the

trade. The more informed the dealer, the stronger is this effect. We also find that traders are more likely

to trade with informed dealers if they are informed themselves. Relatedly, for all traders that are not HFT

whose investment horizon is arguably very short, traders are more likely to trade with informed dealers if

volatility, a proxy for adverse selection, is high.

To interpret our empirical findings we develop a simple model of a two-tiered OTC market in which dealers

intermediate trades between their customers and subsequently hedge their inventory risk in an interdealer

market. In this model, order flow is informative about future price changes. Moreover, some dealers may

forecast future price changes better than other dealers. Those dealers not only incorporate some of their

information in their markups, but are also more likely to further attract informed traders due to an adverse

selection problem that the less informed dealers face: If an informed trader asks an uninformed dealer for a

bid and an ask price, this dealer likely has difficulties to respond as the willingness of the informed trader

to buy or sell at a given ask or bid price will mean bad news for the uninformed dealer. On the other hand,

the informed dealer is able to correctly price an asset and is able to make a market for informed traders.

By focusing on the informedness of traders, we extend a growing literature on the network structure of

OTC markets.2 While Wang (2017) develops an inventory-based model of the OTC market structure and

Sambalaibat (2018) develops a model in which dealers specialize on the trading frequency of their clients,

our findings suggest that dealers also specialize based on the informedness of their customers. In the light of

theoretical and empirical results of Babus and Kondor (2018) and Kondor and Pintér (2019) it is surprising

that the more informed market participants have fewer counterparties than their less informed counterparts.

However, this result is not unreasonable, since informed counterparties are especially vulnerable to infor-

2Characteristic for OTC markers is a core-periphery structure, see for instance Abad et al. (2016), Li and Schürhoff (2019)
or Neklyudov et al. (2017).
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mation leakage that arises from being in contact with many counterparties.3 While previous research on a

two-tiered OTC market pointed out the benefits of trading with connected dealers, who can provide more

immediacy (Di Maggio et al. (2017) and Li and Schürhoff (2019)), we show in this paper that it can some-

times be beneficial to trade with a less connected dealer: In the presence of strong information asymmetries,

only informed dealers may be willing to provide quotes to informed traders. However, these dealers generally

have fewer counterparties.

Also Bjønnes et al. (2017) and Ranaldo and Somogyi (2018) study informed trading in the FX market.

The advantage of the EMIR dataset compared to the datasets used in these studies lies in the availability of

the traders’ and the dealers’ identities. Thus, we can not only document the presence of informed trading,

but also study the persistence of informedness and characteristics as well as the trading behavior of informed

traders with different dealers.

In an influential paper, Evans and Lyons (2002) show that aggregate orderflow predicts future price

changes in the FX market. Menkhoff et al. (2017) show that the order flows from different subsets of traders

have different forecasting abilities. We connect to this strand of literature by showing that the order flow

of different dealers has different forecasting abilities. Moreover, the informedness measures we obtain for

traders and dealers allow us to study the traders’ dealer choice problem.

2 Data and Summary Statistics

We use three different databases: The EMIR database contains information on derivatives transactions in

which at least one counterparty is located in the EU. We use the full database to which the ESRB and

ESMA have unique access. We focus on the FX forward market for the following reasons. First, it is one of

the largest derivatives markets. As shown in Abad et al. (2016), the FX forward market is the second largest

derivatives market in the EU. While the interest rate swaps (IRS) market is still larger in terms of notional

volume, Abad et al. (2016) show that approximately 85% of notional volume of IRSs is being traded among

G16 dealers and other banks. Nonfinancial firms only generate less than 1% of the notional volume traded

in the IRS market. Traders in the FX forward market are more diverse. Less than 70% of notional volume

is generated among G16 dealers and other banks.

The other two databases we use are the ORBIS database, which contains information on the different

3Hendershott and Madhavan (2015) argue that information leakage is an important concern when evaluating whether to
contact many dealers via an RFQ trading protocol or a single dealer in the voice market. Hagströmer and Menkveld (2019)
measure information flow between dealers in the FX market and Liu et al. (2018) model the information leakage in a two-tiered
OTC market, showing that informed traders may benefit from limiting the number of contacted dealers.
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types of traders, and the Thomson Reuters Tick History (TRTH) from which we derive benchmark prices

for the forward contracts. The following subsections describe the data in more detail.

2.1 EMIR and ORBIS data

We use the EMIR activity report and focusing on the last message submitted for each trade. Moreover,

we look at the period from May 2018 to April 2019 and restrict our attention to transactions that happen

between Monday and Friday as well as between 8am and 8pm UTC and exclude transactions with no reported

price rate, or markups with an absolute value of more than 5 %. How we determine the markup for each

trade is explained further below in this section. As in Abad et al. (2016) and Hau et al. (2019) we use the

ORBIS database to assign a type to each trader. Possible types are FUND, BANK, G16, INSURANCE &

PENSION, NON-FINANCIAL, CENTRAL BANK and EMPTY. Firms not covered by the ORBIS dataset

are also classified as EMPTY. The EMIR database reports only the legal entities that were involved in a

transaction. Many firms, especially the G16 dealers use many legal entities. The ORBIS dataset allows us

to associate each legal entity with its parent company.

Table 1: Averages of firm characteristics for D2C market. This table shows the number of firms for
each type in the sample, shows how large the notional volume in EUR per trade involving these firms is and
looks at the trader characteristics for trades involving these firms. The trader characteristics include the
number of monthly counterparties and average monthly trades conditional on trading in that month. The
sample period ranges from May 2018 to April 2019. The last column shows the average maturity (in days)
of the contracts that are traded by the firms of different types. Only trades between dealers and other firms
have been considered when calculating the statistics. Numbers are rounded to the nearest integer or to the
nearest hundred thousand.

trader type # traders avg. notional CPs/month trades/month avg. maturity

CENTRAL BANK 45 35,013,323 5 41 24

EMPTY 14,215 13,395,139 3 144 42

FUND 11,055 10,155,767 4 1,190 38

GOVERNMENT 94 41,151,354 13 1,118 43

INSURANCE & PENSION 524 66,889,994 10 406 36

NON-FINANCIAL 6,739 9,458,687 7 1,349 59

Virtually no trades in the FX forward dealer-to-customer (D2C) market are cleared through CCPs. Of

almost 3 million trades, we only have less than 500 trades involving CCPs. Table 1 considers all customers
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that are not CCPs and shows characteristics of D2C trades in our sample for each type of trader. The

average notional of trades by insurers and pension funds is largest. The mean notional volumes of trades by

funds and nonfinancial firms are considerably smaller (EUR 10.2 million and EUR 9.5 million, respectively).

As traders, funds have on average 4 counterparties in a month conditional on trading in the first place.

Firms classified as EMPTY, have even fewer counterparties with on average 3 trading partners per month

conditional on trading in that month. Nonfinancial firms have more counterparties per month, with an

average number of monthly trading partners of almost 7. Governments have the highest number of monthly

counterparties. Similar comments apply to the average number of monthly trades conditional on trading

in the first place. Strikingly, despite having the largest average notional volume per trade, insurance firms

and pension funds are associated with a small number of monthly trades compared to funds or non-financial

firms. One can also see in the last column of Table 1 that there is some disperion in the types of contracts

traded across the different types of traders. While central banks rather trade contracts with a short maturity

(24 days), funds, governments and nonfinancial firms trade contracts with longer maturities (38, 43 and 59

days, respectively). Figure A.1 shows the distribution of maturities across all traded contracts.

Firms that act as dealers in the FX forward market are labelled either as banks or as G16 dealers. Table

2 shows the same statistics considered in Table 1 for the two types of dealers. The average notional of trades

involving G16 dealers is roughly EUR 15 million which is considerably larger than the average notional of

roughly EUR 7 million of trades between other banks and their clients. Consistent with the core-periphery

structure described in Abad et al. (2016) and analogous findings for other OTC markets, G16 dealers have a

lot more monthly counterparties and on average much more monthly trades than other banks. The average

maturities of the contracts traded by the two different types of intermediaries are relatively similar.

Table 2: Dealer characteristics in the D2C market. This table shows the number of firms for each
type in the sample, shows how large the notional volume in EUR per trade involving these firms is and looks
at the dealer characteristics for trades involving these dealers. The dealer characteristics are the number of
counterparties and the number of trades in the sample period from May 2018 to April 2019. The last column
shows the average maturity of the contracts that are traded by the dealers of different types in days. Only
trades between dealers and other firms have been considered when calculating the statistics. Numbers are
rounded to the nearest integer or to the nearest hundred thousand.

trader type # dealers notional/trade CPs trades avg. maturity

BANK 201 7,232,527 821 42,824 42

G16 16 14,672,750 4,553 208,195 44
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This paper mostly focuses on the D2C market for two reasons. First, assuming D2C trades are client-

initiated allows us to sign these trades. Since the EMIR dataset does not indicate which counterparty

initiates the trade, it is harder to sign client-to-client (C2C) or dealer-to-dealer (D2D) trades. Second,

the C2C market is not very active. While a limited number of firms generated a high number of trades

in the sample period, notional volumes tend to be small. Thus, compared to the notional volume in the

D2D and D2C markets, the C2C market is small. Table A.1 in Appendix A shows how many trades were

executed between the different groups of traders in the C2C market and Table A.2 in Appendix A shows the

corresponding average notional volumes.

The D2D market, on the other hand, is very large. Table A.3 in Appendix A shows how many trades were

executed between the different types of dealers in the D2D market and how much notional was exchanged

on average.

Table 3 breaks down the trading done by different types of counterparties with the two sets of dealers.

The most striking feature is the predominance of trading with G16 dealers as opposed to with smaller banks.

In terms of notional volume G16 dealers execute around 80% of the volume. In terms of the number of

trades we see more diversity. For instance, government entities execute 94% of their notional trades with

G16 dealers, while that share falls to 62% for nonfinancial firms.

Table 3: Who trades with whom in the D2C market? This table shows how much notional volume
in EUR a trader of each type trades on average with G16 dealers and other banks, respectively, as well as
how many transactions happen on average between a trader of a given type and G16 dealers of other banks,
respectively. Notional values are rounded to the nearest million. Numbers of trades are rounded to the
nearest integer.

notional volume # trades

total % traded with G16 total % traded with G16

CENTRAL BANK 3,001mn 74% 87 85%

EMPTY 436mn 84% 33 77%

FUND 1,142mn 87% 112 79%

GOVERNMENT 8,900mn 85% 221 94%

INSURANCE & PENSION 8,302mn 89% 125 83%

NON-FINANCIAL 782mn 82% 80 62%
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2.2 Benchmark rates

We use data from the Thomson Reuters Tick History database in order to calculate benchmark forward

rates. We follow the same procedure to compute a benchmark for the spot rate and the forward adjustment

separately. Specifically:

1. For each second, the best bid and ask prices among all dealers are determined

2. In case there are no observations in a second, the benchmark price from the previous second is used.

However, a given price can only be carried forward for 30 consecutive seconds.

3. In each second, the benchmark is the average of the best bid and ask.

The final benchmark forward rate for a given tenor in a given second is the sum of the benchmarks for

spot rate and forward adjustment for a specific tenor. The tenor can be overnight, 1 week, 2 weeks, 3 weeks,

1 month, 2 months, 3 months, 6 months, 9 months or 1 year. In order to obtain the benchmark rates for

the forward contracts in the EMIR dataset, we use linear interpolation between the two nearest-maturity

benchmark rates. We use the same procedure to calculate the benchmark rates 1, 5 or 30 minutes after each

transaction.

2.3 Volatility

As exchange-rate volatility measure we use an exponentially weighted moving average of squared returns of

the one-week forward exchange rate from one second to the next, i.e.

volatility2
t = 0.001× ret2t + 0.999× volatility2

t−1,

where rett refers to the one-second return (between t and t + 1) on the one-week forward exchange rate.

This measure captures short-lived fluctuations in volatility within a day. Using a different maturity forward

rate (instead of one-week) will not significantly affect this measure as short-run fluctuations in the forward

exchange rates are mostly driven by the spot exchange rate.

2.4 Price impact

The 1-minute price impact is defined as the 1-minute change in the benchmark rate times the direction of

the trade (+1 if it is a client-buy and −1 if it is a sell). Analogously, we calculate the x-day permanent
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price impact as the difference between the benchmark rate at the time of a transaction and the end-of-day

benchmark rate x-days later times the direction of the trade.4

Table A.4 shows the average price impact of trades by the different groups of market participants along

with the corresponding standard deviations for the 1-minute and 1-day horizons. We see that 1-minute price-

impact tends to be positive and highly statistically significant for all trader groups except for central banks.

A positive price impact implies that clients buy (sell) on average when benchmark rates increase (decrease)

subsequent to their trade. Such situation should arise if clients are on average better informed than dealers

about future exchange rate movements, that is if dealers face adverse selection. This is the mechanism

presented in the traditional microstructure literature (e.g., Kyle (1985) and Glosten and Milgrom (1985)).

Of course, it is perhaps less intuitive to think that clients have private information about future exchange

rate movements, which we typically think of as reflecting macro-economic risks. However, as we show in

the model section, clients’ information may pertain to their individual order flow, which may be correlated

to total order flow, which in the short run may affect the change in exchange rates (see also Evans and

Lyons (2002, 2005)). Alternatively, some investors may also be better at interpreting public news, say about

macroeconomic fundamentals, and thus effectively also have private information about systematic sources of

risk (e.g., Kim and Verrecchia (1991)). Interestingly, we see that, at a 1-day horizon, price impact remains

positive and highly statistically significant on average for all traders except for Insurance & Pension trader

types who display negative price impact, which effectively implies that at the longer horizon their trades on

average tend to loose money, as one might explain if their trading were motivated by hedging motives for

example.

Table A.5 shows the price impact of the C2D trades aggregated at the dealer level for G16 and Banks

separately. We find strong evidence that dealers face adverse selection both at the 1-minute and 1-day

horizon, as price impact is positive and highly statistically significant in all cases.

Of course, if dealers expect to incur a price impact cost on their client trades, it would be natural for

them to charge an ex-ante premium, a ‘markup,’ to account for this risk. We next explain how we compute

markups on C2D trades.

2.5 Markups

We define a trade’s markup as the difference between the transaction rate and the benchmark rate times

the direction of the trade. Table A.6 shows the average markups for the different trader types and their

4For that calculation we hold interpolation weights fixed and for each tenor, use the last quoted price before 8pm UCT. We
further ignore week-ends that is treat the data as if Mondays follow Fridays.
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respective standard deviations. We see that markups tend to be positive and statistically significant for all

trader types. There seems to be an interesting positive relation between price impacts and markups, in that

trader types that have higher price impact typically tend to be charged higher markups. For example, central

banks face the smallest markup and hedge funds the highest. However, the relation is not monotone as non-

financial traders face high markups (even higher than funds on average) and there seems to be substantial

cross-sectional variation in markups. Table A.7 shows the markups aggregated at the dealer type. G16

dealers charge on average significantly smaller markups then non G16 banks, but there is a lot of variation

across dealers. Figure A.2 in Appendix A shows the time series of daily average markups across all trades.

The distribution of markups does not seem to exhibit any trends. In the next sections, we take a closer look

at the determinants of price impact and markups, and at the relation between both.

3 Informed Clients

As shown in Tables A.4 and A.5, there is evidence that some groups of traders have significant positive price

impact both at the 1-day and 1-minute horizons, which suggests that some traders have better information

about future exchange rate changes. However, there is also substantial cross-sectional variation in measured

price impact across traders and over time. In this section, we investigate if there are persistent differences in

price impact across traders. That is, if we can find evidence that some (groups of) traders are consistently

better than others at predicting future exchange rates, in the sense that they earn consistently significantly

higher trading profits. To be more specific, suppose that the price impact of trader i at time t is given by

PIit = µi + εit,

where εit is iid with finite variance and zero expectation and µi ∈ R. We would like to test if there is

dispersion in µi across traders and specifically, whether some (groups of) traders have significantly higher

µi > µj , say. The more transactions we observe for a given trader, the better our estimate of µi. Analogously,

forming groups of traders gives us a relatively precise estimate of a group’s average µi. In order to still have a

sufficient dispersion in those averages, our number of groups cannot be too low. We choose to form 30 groups

to obtain a good trade off between minimizing the error variance while retaining enough dispersion in the

groups’ price impacts. Lastly, we would like to form different groups of traders according to characteristics

that are correlated with the µi, but not with the error εit. This rules out sorting traders based on their

realized price impact, since this measure is correlated with the error. Instead, we sort traders based on their
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number of trades, since this is likely uncorrelated with the error, but potentially correlated with skill µi.

To be specific, we proceed as follows. Considering only traders that traded in both halves of our sample

period, we sort the traders based on the number of trades done in the first half of the sample. Then we keep

adding the traders to a group until the total number of trades in that group exceeds 1/30 times the total

number of trades in the first half of the sample period. We then start adding the next traders to a group

until the total number of trades of group 1 and 2 exceeds 2/30 times the total number of trades in the first

half of the sample period. We continue until we have sorted the traders into 30 groups. For each group and

each half of our sample period, we calculate the average permanent price impact of all trades made by that

group. In Panel A of Figure 1, the average 1-minute price impact in the second half of the sample (PI2) of

each group is plotted against the corresponding average 1-minute price impact in the first half of the sample

(PI1). In Panel B, the same is done using the 1-day price impact. Both Panels of Figure 1 suggest that price

impact is persistent.
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Figure 1: Persistence of price impact. In Panel A, a group’s average 1-minute price impact in the
second half of the sample is plotted against its 1-minute price impact in the first half of the sample. In
Panel B, a group’s average 1-day price impact in the second half of the sample is plotted against its 1-day
price impact in the first half of the sample. Larger circles correspond to groups in which traders generate a
higher notional volume (EUR) per trade in the first half of the sample. The red lines show the fitted values
of linear regressions.

Different traders may have different investment horizons. In particular, there may be a set of traders

whose goal it is to trade intraday on very short-lived signals. Even though these market participants might

trade very profitably, their 1-day price impact may not be very persistent, since it is not their objective to

trade on long-term price changes. On the other hand, we would expect strong persistence in 1-minute price

impact if there are informed traders in this set. Figure A.3 in Appendix A shows the distribution of the
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traders’ average numbers of trades per day (conditional on trading on a day). Roughly 1% of traders do more

than 10 trades per day if they trade at all. We classify these traders as HFT. To investigate whether there

are differences between the price impact of the HFT traders and the lower-frequency traders, we compare the

persistence of the 1-minute price impact of HFT traders in Panel A of Figure 2 with that of non-HFT traders

in Panel B. We find strong evidence - indeed stronger compared to Panel A of Figure 1 - of persistence in

1-day price impact for HFT traders (Panel A), and hardly any evidence of persistence for non-HFT traders

in Panel B.

One can see in both panels that a high price impact is not related to high notional volume per trade, as

it might be the case if the price impact were inventory-driven. Such an inventory-based price impact may

arise as follows. If a dealer takes a large customer order, this is a private transaction between a dealer and

its client. Other dealers will not change their quotes at the very time of the transaction. But shortly after

the trade, the dealer who took the customer order may try to offset the inventory shock in the interdealer

market, leading other dealers to change their quotes as well.

It seems that traders with high price impact typically have a lower average notional per trade. Similarly,

Figure A.5 in the appendix shows that groups with high price impact are also not groups with high total

notional traded. Thus, price impact seems more likely to be information-based.5
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Figure 2: Persistence of 1-minute price impact for HFT vs. non-HFT market participants.
In both panels, a group’s average 1-minute price impact in the second half of the sample is plotted against
its 1-minute price impact in the first half of the sample. In Panel A, only HFT market participants are
considered and in Panel B, only non-HFT market participants are considered. Larger circles correspond to
groups in which traders generate a higher notional volume (EUR) per trade in the first half of the sample.
The red lines show the fitted values of linear regressions.

5However, this information may very well be information about aggregate inventory or order flow.
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If instead we focus on the 1-day price impact, the opposite picture emerges. Figure 3 shows that the 1-day

price impact is more persistent for non-HFT traders (Panel B) than for HFT traders (Panel A). Neither

in Figure 2 nor in Figure 3, is it the case that high price impact is associated to high notional volume per

trade. Figures A.6 and A.7 in the appendix show that, for the same groups of traders, high price impact

is not related to high total notional volume traded. Again, this is consistent with information-driven price

impact, but inconsistent with inventory-based explanation of persistently positive price impact.
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Figure 3: Persistence of 1-day price impact for HFT vs. non-HFT market participants. In both
panels, a group’s average 1-day price impact in the second half of the sample is plotted against its 1-day
price impact in the first half of the sample. In Panel A, only HFT market participants are considered and in
B, only non-HFT market participants are considered. Larger circles correspond to groups in which traders
generate a higher notional volume (EUR) per trade in the first half of the sample. The red lines show the
fitted values of linear regressions.

In order to formally assess the persistence of the price impact in Figures 1 to 3, we regress a group’s

average price impact in the second half of the sample on its average price impact in the first half of the

sample. The results for the various groups of traders and different horizons are shown in Table 4. One can

see that estimates for the coefficient in front of the price impact in the first half of the sample are statistically

significant except for the 1-minute price impact of non-HFT traders. Moreover the R2 statistics from the

regressions are generally large, especially for non-HFT traders’ 1-day price impact and for HFT traders’

1-minute price impact.
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Table 4: Persistence of price impact for different traders and horizons. This table regression
coefficients and robust standard errors for the regression

PI2 = β0 + β1PI1 + ε,
where PI2 is the price impact in the first half of the sample, PI2 is the price impact in the second half
of the sample and ε is an error term. We use the average price impact generated by the groups of traders
shown in Figures 1 to 3. Columns 1 and 2 refer to the groups from Panel A and B, respectively, of Figure 1.
Columns 3 and 4 refer to the groups from Panel B of Figures 2 and 3, respectively. Columns 5 and 6 refer
to the groups from Panel A of Figures 2 and 3, respectively.

(1) (2) (3) (4) (5) (6)

all all non-HFT non-HFT HFT HFT

1 min 1 day 1 min 1 day 1 min 1 day

PI1 0.33** 0.34** -0.01 0.72*** 0.37*** 0.20**

(0.14) (0.14) (0.16) (0.21) (0.13) (0.09)

Constant 0.00 0.00 0.00*** -0.00 -0.00 0.00*

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

N 30 30 30 30 29 29

r2 0.17 0.24 0.00 0.38 0.15 0.10

p < 0.05, ** p < 0.01, *** p < 0.001

In order to characterize informed and uninformed traders, we look at the three groups with the highest

price impact in the second half of the sample in Panel B of Figure 1 and call the traders in those groups

‘high-PI traders.’ Analogously, we call all traders in the groups from Panel B in Figure 1 with negative price

impact in both halves of the sample ‘neg-PI traders.’

Table 5 shows characteristics of neg-PI or high-PI traders depending on whether they belong to the HFT

group or not. One can see that for both non-HFT and HFT market participants, informedness is negatively

related to trading volume and number of counterparties. On the other hand, the relationship between the

number of monthly trades is nonmonotone. For the less active non-HFT market participants, more monthly

trades are associated with being uninformed. On the other hand, informed HFT market participants trade

more often than their less informed neg-PI counterparts. For both non-HFT and HFT market participants,

trading longer maturities is associated with being in the high-PI group, i.e. higher informedness, which may

be consistent with these traders seeking the largest exposure.
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Table 5: Trader characteristics. The following table shows properties of neg-PI and high-PI traders
depending on whether they belong to the HFT group or not. Notional values are rounded to the nearest
hundred thousand. The numbers of counterparties and average monthly trades are rounded to one decimal
and the average maturity is rounded to the nearest integer.

non-HFT HFT

neg-PI high-PI neg-PI high-PI

notional/trade (EUR) 21.4mn 9.6mn 11.9mn 1.4mn

counterparties 4.1 1.2 6.1 3.8

avg. monthly trades 102.9 3.0 706.0 1221.0

average maturity (days) 34 61 62 69

Looking only at high-PI and neg-PI traders, Table 6 examines which trader characteristics are associated

with being informed. Table 6 shows the result of a linear probability regression model to explain a dummy

variable that is one if the trader is a high-PI trader and zero otherwise. A trader’s number of counterparties,

traded notional and the number of monthly trades are negatively related to being a high-PI trader, as one

can observe in columns 1 to 3. Also, HFT market participants are more likely to have a lower 1-day price

impact, as shown in column 4. Notional volume is not significant anymore in column 5, when controlling

for the number of trades and the number of counterparties. One can also see that the number of trades has

different implications for the probability of being informed depending on whether the trader belongs to the

HFT group or not. The number of counterparties is still negatively related to being informed even when

controlling for other factors. This result seems to run against the findings of Kondor and Pintér (2019) that

informed traders have more counterparties, but is consistent with information leakage examined empirically

in Hendershott and Madhavan (2015) and Hagströmer and Menkveld (2019) and modeled theoretically in

Liu et al. (2018). The cost of information leakage is higher for informed traders, which may be the reason

why they contact fewer dealers.
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Table 6: Probability of being an informed trader. This table shows coefficient estimates B and robust
standard errors for the regression

informed = BX + ε,
where informed is a dummy variable that is equal to one if a trader belongs to the high-1-day-PI group
and equal to zero otherwise. The vector X includes different trader characteristics specified in the table and
ε is an error term. The sample includes all high-Pi and neg-PI traders from the groups in Figure 1. The
averages of the numbers of trades have been divided by 103 and averages of the notionals per trade have
been divided by 1011.

(1) (2) (3) (4) (5)

avg. monthly counterparties (CPs) -84.70*** -12.07***

(12.17) (3.22)

avg. monthly trades -0.19** -7.87***

(0.09) (0.23)

avg. monthly trades × HFT dummy 7.91***

(0.23)

avg. notional in EUR -23.31*** 4.82

(7.95) (5.99)

HFT dummy -0.52*** -0.57***

(0.08) (0.08)

Constant 1.07*** 0.96*** 0.96*** 0.96*** 1.03***

(0.02) (0.00) (0.00) (0.00) (0.00)

N 9628 9628 9628 9628 9628

r2 0.26 0.03 0.00 0.03 0.80

* p < 0.10, ** p < 0.05, *** p < 0.01

To see how robust our findings about the persistence of the price impact of different traders, we break

the sample into four different subperiods, and check whether traders who had a high price impact in the

first period also have a high price impact in the following periods. To this end, we sort all traders who were

active in all four quarters of our sample into two groups based on their number of trades in the first quarter

and then compute their average price impact in each quarter of the sample. Figure 4 shows that the traders

who had a high price impact in the first quarter generally also have a higher price impact in the subsequent

quarters. Moreover, if one restricts attention to non-HFT market participants, traders who have a higher

price impact in the first quarter also have a higher price impact in the last quarter.

16



0
.0

00
02

.0
00

04
.0

00
06

.0
00

08
.0

00
1

1 2 3 4
period

PI_group1 PI_group2

Panel A (all traders).

−
.0

0
0

0
2

0
.0

0
0

0
2

.0
0

0
0

4
.0

0
0

0
6

1 2 3 4
period

PI_group1 PI_group2

Panel B (non-HFT).

Figure 4: Persistence across multiple subperiods. We sort all traders who were active in all four
quarters of our sample into two groups based on their number of trades in the first quarter and then plot
their average 1-day price impact in each quarter of the sample. In Panel A, transactions by all traders were
considered and in Panel B, only trades by non-HFT market participants were considered.

4 Informed Dealers

Evans and Lyons (2002) find that aggregate orderflow in the interdealer market predicts future price changes

in the DM/USD spot market using four months of data from an interdealer trading system in 1996. Most of

the variation in forward rates comes from variation in the spot rate. Moreover, order flow in the interdealer

market is (in most models, like the one presented in this paper) generated by order flow from customers.

Thus, one may hypothesize that customers’ order flow predicts future price changes in the EUR/USD forward

market. The model presented in Section 6 presents a mechanism that would generate such predictability and

also suggests that the customer order flow of different dealers has different predictive power for future price

changes. Similar to Evans and Lyons (2002), we look at the order imbalance, i.e. the difference between daily

buy and sell orders received by a dealer. We define the volume imbalance as the difference between notional

volume bought by customers and notional volume sold by customers on a given day. Table 7 describes order

imbalance and volume imbalance for the different dealer types. One can see that both kinds of dealers have

relatively small average order imbalances and small average volume imbalances. However, G16 dealers have

much more volatile order imbalances and volume imbalances as indicated by their larger mean absolute order

and volume imbalances.
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Table 7: Order imbalance (OI). This table shows the average order imbalance, the average of the absolute
values of order imbalances for each type of dealer as well as the respective values for the volume imbalance.

trader type mean OI mean absolute OI mean volume imbalance mean absolute volume imbalance

BANK -3 8 -2.6mn 58.1mn

G16 -2 66 3.6mn 809.0mn

In order to measure how well each dealer can forecast future price changes using their customers’ order

flow, we regress changes in the benchmark price for the one-week forward exchange rate between the end of

day t and the end of day t+ 1 on the sum of the order imbalances on the last five days on which the dealer

has traded. The higher the resulting R2 statistic, the more informed is the dealer. As we show in the model

in section 6.3 the R2 statistic should also be a determinant of a dealer’s markups as it is related to a dealer’s

expectation of the price impact it will incur.

Table 8 shows summary statistics of the R2 we obtain for every dealer in the sample, provided that enough

data is available to perform the regression described above. We also transform the R2 into an annual Sharpe

ratio using the method in Table 1 in Cochrane (1999), assuming the true mean of price rate movements is

zero and 250 trading days in a year.6 One can see in Table 8 that even though the R2 statistics obtained in

daily forecasts seem small, annualized Sharpe ratios are actually substantial.

6Cochrane (1999) derives the formula

SRinformed, annual =

√
(SRuninformed,daily)2 +R2

√
1−R2

√
days/year,

where SRinformed annual is the annualized Sharpe ratio, a dealer that has a given R2 when forecasing daily returns can achieve,
given that an investor not forecasting returns can achieve a daily Sharpe ratio of SRuninformed daily . Under the assumptions
in the text, this formula becomes

SRinformed, annual =

√
R2

√
1−R2

√
250.
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Table 8: Dealer informedness and Sharpe ratios. This table shows summary statistics for the R2

statistic from the regression of price changes on the dealers order imbalances described in the text, i.e.
ratet+1 − ratet

ratet
= β0,i + β1,isum OIi + εit, ,

where εit is an error term, sum OIi refers to the sum of the order imbalances of dealer i for its last 5 trading
days and ratet refers to the one-week forward exchange rate at day t.

Variable Obs Mean Std. Dev. Min Max

R2 142 0.022383 0.047305 .000002 0.27981

Sharpe ratio 142 1.72584 1.868606 0.020974 9.855478

In order to study informed and uninformed dealers, we look at trade-by-trade data and assign trades to

two quantiles according to the informedness of the dealer trading. We create a dummy variable that is equal

to 1, if the dealer informedness is above the median informedness across all trades. For all other trades, the

dummy variable is equal to zero. We call dealers for which this dummy variable is one “informed.”

Some of the dealers in our sample trade very infrequently. Especially those dealers with extreme Sharpe

ratios only have a very limited number of days on which they trade in our sample. Figure A.8 in Appendix

A shows the distributions of the R2 across dealers. Most dealers have an R2 of less than 0.025. In order to

avoid focussing on outliers when studying the characteristics of informed dealers, we focus on dealers with

an R2 of less than 2% and a notional trading volume of at least 0.5% of the entire market. As an additional

robustness check we also look separately at dealers with a notional trading volume greater than 2.5% of the

entire market.

In Table 9 one can see the characteristics of the high versus low R2 dealers, depending on the fraction of

total D2C volume in EUR they are responsible for. We see that more informed dealers tend to have smaller

notionals per trade and have fewer counterparties in D2C and D2D markets.
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Table 9: Dealer characteristics. The following table shows properties informed and uninformed dealers
depending on how much notional volume they trade. Percentages are rounded to one decimal, numbers of
counterparties are rounded to the nearest integer and notional volumes are rounded to the nearest hundred
thousand.

2.5% > volume > 0.5% volume > 2.5%

uninformed informed uninformed informed

% G16 66.6% 16.7% 100% 100%

dealer’s avg. notional/trade 12.1mn 9.2mn 17.5mn 16mn

D2C counterparties 1399 1288 5106 3947

D2D counterparties 123 102 266 220

% of total notional D2C volume (in EUR) 5.2% 8.7% 50% 30.3%

Table 10 shows the result of a linear probability regression model , which predicts the informdness dummy

based on various dealer characteristics. One can see that both traded notional and the number of trades are

highly significant and negatively correlated with being informed. This is true for both subsets of dealers.

In the regressions shown in Table A.11 in Appendix A we use the dealer’s R2 as the left-hand side variable

instead of the informedness dummy and get similar results.
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Table 10: Probability of being an informed dealer. We run the regression

info dummy = BX + ε,
where info dummy is the dummy variable described in the text which measures the informedness of a dealer.
This table shows the coefficient estimates B for various explanatory variables X as well as robust standard
errors. In columns 1 to 3 we focus on dealers executing more than 0.5% of the notional volume (EUR) of the
entire D2C market. In columns 4-6 we focus on dealers executing more than 2.5% of the notional volume
of the entire D2C market. The number of trades has been divided by 107 and the notional traded has been
divided by 1010.

> 0.5% notional volume > 2.5% notional volume

(1) (2) (3) (4) (5) (6)

avg. notional traded -202.75 -333.44* -149.26 -807.10***

(151.30) (189.49) (258.89) (92.44)

# trades -24.36** -41.15*** -36.34*** -62.32***

(8.60) (12.92) (10.81) (7.64)

D2D counterparties 0.00

(0.00)

D2C counterparties 0.00

(0.00)

Constant 0.88*** 0.90*** 1.23*** 0.80 1.18*** 2.99***

(0.24) (0.18) (0.29) (0.50) (0.28) (0.28)

N 20 20 20 11 11 11

r2 0.06 0.20 0.30 0.02 0.43 0.87

* p < 0.10, ** p < 0.05, *** p < 0.01

Figure A.4 in Appendix A shows that traders with higher price impact tend to pay higher markups.

This suggests that dealers may price discriminate based on client identities or characteristics. Since there is

evidence that clients’ price impact is persistent, it would be natural to think that dealers set markups based

on past client price impact. At the same time, since we have shown that dealers are differentially informed

about future price changes based on their clients’ aggregated order imbalance, it is also natural to think

that dealers will use that information to set markups. To better understand the determinants of markups,

we now perform a panel regression, where we explain client markups with various client, dealer, and trade

characteristics.
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To eliminate data errors, we exclude all trades with markups below -2% and above 3%. This effectively

puts a 2% band around the traders’ average markups shown in Figure 5 in Hau et al. (2019). In column 1

of Table 11, the coefficient for realized values of 1-day price impact is significant at the 5% level. Moreover,

we find a significant interaction term with the informedness dummy, which suggests that informed dealers’

markups react more strongly to the realized 1-day impact. This is consistent with the implications of our

model in section 6.3, where dealers that have more informed order-flow are better at predicting future price

changes and thus set markups that are more in line with future price changes.

Realized values of price impact measures may be significant in the regression from Table 11, because they

are correlated with other trader characteristics. In order to control for those, we add fixed effects for each

dealer-trader pair along with other time-varying control variables. The results of this regression are shown

in column 2 of Table 11. The coefficients on the realized 1-day price impact and the interaction term in the

first row are very similar to the estimates in column 1 and still significant.

In order to asses how much the results in columns 1 and 2 of Table 11 are driven by the dealers’ connections

in the D2D market, we replace the informed-dealer dummy by a connected-dealer dummy in column 3. To

this end, we assign trades into two quantiles according to the number of the dealer’s counterparties in the

D2D market. The connected-dealer dummy is a dummy variable that is equal to 1, if the dealer’s number of

D2D counterparties is above the median across all trades. The results of this regression are shown in column

3 of Table 11. We find that more connected dealers respond less to changes in future prices, as measured by

realized values of 1-day price impact. However, the coefficient in front of the interaction term is not even

significant at the 10% level, whereas the coefficient in front of the interaction term in column 2 of Table 11

is significant at the 5% level. It thus seems that the informed dealer dummy better captures differences in

the dealers’ sensitivity with respect to future price changes.

In column 4 of Table 11, we study what may drive potential dealer and trader fixed effects on markups.

One can see that traders that have on average a higher 1-day price impact also have to pay higher markups.

The more counterparties a trader has, the lower the markups possibly due to increased bargaining power.
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Table 11: Markups and price impact. We run the regression

markupit = BX + ε,
where εit is an error term, X are explanatory variables specified in the table and markupit is the markup that
trader i has to pay at time t. We report coefficients B and standard errors that are clustered at the dealer
level. We excluded all trades with markups below -2% and above 3%. Order imbalance and its standard
deviation have been divided by 106. Lastly, the logs of counterparties and trades have been divided by 1000.

(1) (2) (3) (4)

realized 1-day impact × informedness dummy info 0.0112*** 0.0099** 0.0104**

(0.0043) (0.0043) (0.0044)

realized 1-day impact × connectedness dummy -0.0068

(0.0042)

realized 1-day impact 0.0107*** 0.0091*** 0.0171*** 0.0091***

(0.0012) (0.0015) (0.0031) (0.0015)

realized 1-minute impact 0.0949*** 0.0892*** 0.0837**

(0.0330) (0.0337) (0.0338)

market conditions:

volatility 0.7146* 0.7286* 1.0947*

(0.3640) (0.3804) (0.6527)

Smart average 1-day impact group 0.0013 0.0019 0.0035

(0.0061) (0.0064) (0.0073)

time-varying trader characteristics:

log(traders’ monthly counterparties) -0.0139 -0.0145 -0.0901***

(0.0212) (0.0213) (0.0215)

log(traders’ monthly trades) 0.0269*** 0.0276*** -0.0319

(0.0086) (0.0086) (0.0238)

time-varying dealer characteristics:

dealer’s signed OI 0.0350 0.0343 0.0326

(0.0323) (0.0323) (0.0339)

(To be continued)
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Table 11-Continued.

(1) (2) (3) (4)

fixed trader characteristics:

trader’s average 1-day impact 0.1098***

(0.0173)

high-PI dummy 0.0002***

(0.0001)

neg-PI dummy -0.0001*

(0.0000)

HFT -0.0000

(0.0001)

fixed dealer characteristics:

informedness dummy 0.0000 -0.0000

(0.0001) (0.0001)

connectedness dummy 0.0000

(0.0001)

standard deviation of dealer’s OI -0.0983*

(0.0499)

Constant 0.0002*** 0.0000 0.0000 0.0004**

(0.0000) (0.0001) (0.0001) (0.0002)

dealer-client fixed effects no yes yes no

N 2770512 2742738 2684941 2684941

p < 0.05, ** p < 0.01, *** p < 0.001

To examine how trades by very active traders are different from those trades made by less active market

participants, we focus only on HFT market participants in column 1 of Table 12. We can see that results

related to 1-day price impact are less strong than for the whole sample, but the coefficient on 1-minute

price impact is larger. On the other hand, the results associated with 1-day price impact are stronger when

focussing on non-HFT market participants. The results are not much affected if we exclude neg-PI traders,

or if we distinguish between low- or high-volatility periods. However, comparing columns 5 and 6 in Table

12, we see that traders with a high average price impact have to pay even higher markups in high-volatility
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periods.

Table 12: Markups and price impact in different subsamples We run the regression

markupit = BX + ε,
where εit is an error term, X are explanatory variables specified in the table and markupit is the markup
that trader i has to pay at time t. We report coefficients B and standard errors that are clustered at the
dealer level. In column 1, we focus on HFT market participants, and in column 2 we focus on non-HFT
market participants. In column 3 we exclude all traders labelled as neg-PI traders. In column 4 we focus
only on those traders. In column 5 we focus on the trades for which volatility is below the median across
all trades and in column 6 we focus on trades for which volatility is above the median across all trades. We
excluded all trades with markups below -2% and above 3%. Order imbalance and its standard deviation
have been divided by 106.

(1) (2) (3) (4) (5) (6)

HFT non-HFT no neg-PI neg-PI low vol high vol

real. 1-day impact × info dummy 0.006 0.012** 0.009** 0.020*** 0.011* 0.009***

(0.004) (0.005) (0.004) (0.007) (0.006) (0.003)

realized 1-day impact 0.010*** 0.009*** 0.009*** 0.007*** 0.009*** 0.009***

(0.003) (0.002) (0.002) (0.002) (0.002) (0.002)

realized 1-minute impact 0.139*** 0.054* 0.078*** 0.116 0.089*** 0.081

(0.053) (0.029) (0.027) (0.088) (0.030) (0.055)

market conditions:

volatility 2.399** 0.348 1.197* 0.284 2.551*** -0.870

(1.003) (0.501) (0.708) (0.512) (0.674) (1.344)

Smart average 1-day impact 0.005 0.002 0.005 -0.004 -0.004 0.011**

(0.010) (0.008) (0.007) (0.014) (0.012) (0.005)

varying trader characteristics:

log(traders’ monthly counterparties) -0.033** -0.131*** -0.101*** -0.042** -0.088*** -0.095***

(0.016) (0.035) (0.023) (0.019) (0.022) (0.023)

log(traders’ monthly trades) 0.008 -0.068*** -0.030 -0.018 -0.049** -0.016

(0.023) (0.022) (0.025) (0.017) (0.021) (0.025)

varying dealer characteristics:

dealer’s signed OI 0.050 0.019 0.037 0.006 0.025 0.040

(0.043) (0.026) (0.036) (0.024) (0.025) (0.043)

(To be continued)
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Table 12-Continued.

(1) (2) (3) (4) (5) (6)

HFT non-HFT no low-PI low-PI low vol high vol

fixed trader characteristics:

trader’s average 1-day impact 0.043 0.117*** 0.112*** -0.059 0.099*** 0.121***

(0.071) (0.018) (0.017) (0.084) (0.021) (0.027)

high-PI dummy 0.000** 0.000** 0.000*** 0.000 0.000** 0.000***

(0.000) (0.000) (0.000) (.) (0.000) (0.000)

neg-PI dummy 0.000 0.000 0.000 0.000 -0.000 -0.000**

(0.000) (0.000) (.) (.) (0.000) (0.000)

HFT 0.000 0.000 -0.000 -0.000 0.000 -0.000

(.) (.) (0.000) (0.000) (0.000) (0.000)

fixed dealer characteristics:

informedness dummy 0.000 -0.000 -0.000 0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

connectedness dummy 0.000*** -0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

standard deviation of dealer’s OI -0.040 -0.103 -0.114** -0.017 -0.111** -0.084*

(0.040) (0.069) (0.055) (0.048) (0.054) (0.048)

Constant -0.000 0.001*** 0.000** 0.000 0.000*** 0.000**

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N 905843 1779098 2274265 410676 1347896 1337045

p < 0.05, ** p < 0.01, *** p < 0.001

Table A.12 in Appendix A shows similar regressions as those from Table 12, but using deale and trader

fixed effects. The coefficient estimates in Table A.12 are very similar to those shown in Table 12.

Figure A.9 in Appendix A illustrates the findings from the regression with a simple plot that shows how

more informed dealers charge higher markups when the price impact is higher.

Appendix C discusses the possible errors-in-variables problem that may arise because both the measured

price impact and the measured markup are affected by errors in the benchmark rate. Such errors may arise

because of noisy quotes in the TRTH database or imprecise time-stamps in the EMIR database, which would
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lead to a mechanical positive correlation between markups and realized price impact. As we discuss in the

appendix, this bias is unlikely to affect our main results however.

5 Endogenous Dealer Choice

The model presented in Section 6.4 suggests that informed traders are more likely to trade with dealers who

have informative order flow. In order to test this hypothesis, we study how a trader’s average 1-day price

impact affects the probability of trading with an informed dealer.

As in sections 3 and 4, HFT market participants arguably behave differently from non-HFT market

participants. For this reason, we consider these two groups separately. In Table 13 one can see that non-

HFT traders are more likely to trade with informed traders if their 1-day price impact is higher on average.

Even 1-minute price impact measures positively affect the probability of trading with an informed dealer,

as can be seen in column 2. These statements remain true when controlling for other trader characteristics

that are associated with being informed (see Section 3), like the number of counterparties, or the number

of trades. On the other hand, 1-day price impact measures do not affect dealer choice for HFT market

participants, since they likely have a much shorter investment horizon. However, for HFT average 1-minute

impact still positively affects the probability of trading with an informed dealer. One can also see that

non-HFT clients are more likely to trade with informed dealer if volatility is high, while HFT clients are

more likely to trade with uninformed dealers if volatility is high.

The results shown in Table 13 suggest that traders are more likely to trade with informed dealers if they

are more informed on average (i.e. have a higher average 1-day price impact), when adverse selection is higher

on average (volatility is higher), or when they are particularly well informed (the realization of the 1-day

price impact turns out to be high). To avoid the endogeneity problem that we find that informed traders

choose informed dealers, because we define an informed dealer based on the informativeness of her clients’

order flow, we now define dealer informedness as the informativeness of the order flow from non-financial

companies. This means we perform the same steps as in Section 4, including the definition of a dummy

variable, but use order flow only from non-financial customers to predict future price changes. We then look

at all traders except for non-financial firms and examine the probability of trading with an informed dealer.

The results are shown in Table 14. We see that non-HFT traders are still more likely to trade with dealers

that are informed according to this new measure.
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Table 13: Probability of trading with informed dealers. We run the regression

informed = BX + ε,
where εit is an error term, X are explanatory variables specified in the table and informed is the informed-
dummy discussed in Section 4. We report coefficients B and standard errors that are clustered at the trader
level. The dataset includes D2C trades. We excluded all trades with markups below -2% and above 3% .

excluding HFT HFT only

(1) (2) (3) (4) (5) (6)

avg. 1-day impact 10.83*** 10.81*** 8.98** -36.34 -25.24 -3.60

(3.77) (3.77) (3.75) (71.99) (70.88) (67.83)

avg. 1-min impact 148.05* 153.02* 3531.22 4118.06*

(81.34) (81.03) (2180.98) (2092.95)

realized 1-day impact 0.02 0.03 0.10 0.21

(0.05) (0.05) (0.12) (0.13)

realized 1-min impact 3.82*** 3.88*** -0.92 -1.85

(0.98) (0.98) (1.15) (1.18)

log(monthly counterparties) -21.45** 58.11

(9.58) (38.63)

log(monthly trades) -6.75 -87.91***

(6.63) (29.49)

volatility 428.48*** -1563.72**

(131.95) (750.82)

Constant 0.54*** 0.54*** 0.56*** 0.38*** 0.38*** 1.01***

(0.01) (0.01) (0.01) (0.06) (0.06) (0.18)

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 14: Probability of trading with informed dealers without circularity. We run the regression

informed∗ = BX + ε,
where εit is an error term, X are explanatory variables specified in the table and informed∗ is the alternative
info dummy discussed this section. We report coefficients B and standard errors that are clustered at the
trader level. The dataset includes D2C trades. We excluded all trades with markups below -2% and above
3% as well as trades made by non-financial firms.

excluding HFT HFT only

(1) (2) (3) (4) (5) (6)

avg. 1-day impact 10.92** 10.77** 10.01** 221.28** 219.26** 288.62***

(4.81) (4.80) (4.83) (101.24) (99.80) (98.29)

avg. 1-min impact -53.34 -37.87 -846.62 -244.94

(98.22) (97.69) (3456.66) (3409.79)

realized 1-day impact -0.02 -0.01 -0.03 0.09

(0.05) (0.05) (0.19) (0.20)

realized 1-min impact 1.41 1.37 2.10 1.17

(1.12) (1.12) (3.44) (3.33)

log(monthly counterparties) -23.17** 120.16***

(10.91) (24.41)

log(monthly trades) 4.07 -118.95***

(7.53) (15.32)

volatility 864.03*** -932.14*

(150.65) (528.57)

Constant 0.50*** 0.50*** 0.45*** 0.30*** 0.30*** 1.07***

(0.01) (0.01) (0.02) (0.06) (0.06) (0.13)

* p < 0.10, ** p < 0.05, *** p < 0.01

Table A.8 in Appendix A shows the 1-day and 1-minute price impact that trades executed by informed

and uniformed dealers have. One can see that both the 1-minute price impact and the 1-day price impact

are higher for trades executed by informed dealers. One obtains a slightly different result when using other

proxies for dealer informedness like connections in the D2C market or connections in the D2D market. Tables

A.9 and A.10 in Appendix A show that more connected dealers face a higher 1-minute price impact, but

a lower 1-day price impact. In Table A.13, we run regressions similar to those in Table 13, except that we
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replace the informedness dummy with a connectedness dummy. In this case average price impact measures

have no significant effect on dealer choice. Thus, the informedness of a dealer cannot simply be captured by

the dealers D2D connections.

6 Model

The aim of this section is to lay out a mechanism how dealers learn from the orderflow of their customers

and incorporate this information in their quotes. For the sake of clarity, other determinants of the dealers’

quotes are not modeled explicitly. In section 6.4, the model is extended in order to account for informed

trading and endogenous dealer choice.

6.1 Setup

There are N ∈ N dealers, with N > 2. The dealers are indexed by the set D := {1, 2, ..., N} and have two

periods to trade one asset: In the first period, each dealer i ∈ D can trade with a a group of clients. The

clients initiate the trade by specifying a quantity they want to trade. The dealer responds with a competitive

quote at which all orders of the dealer’s clients are executed. In the second period, the N dealers can trade

among each other in a centralized market. Each dealer submits linear demand schedules and the price is

determined by market clearing.

Let xi denote the net amount of the asset that clients buy from dealer i.7 These quantities are jointly

normally distributed across dealers with covariance matrix Σ:

(x1, ..., xN )′ ∼ N (0,Σ). (1)

Moreover, let p1,i denote the price at which the transaction between dealer i and the clients happens, let

τi denote the quantity that dealer i buys from other dealers in period 2 and let p2 denote the price at which

the dealers trade among themselves in period 2.8

Then, the utility of dealer i ∈ D in the end of period 2 is given by

Ui(xi, p1,i, p2) := −(−xi + τi)
2 γ

2
+ xip1,i − p2τi, (2)

where γ > 0 determines the aversion of the dealer to holding inventory. The first term in (2) represents

7Here, xi < 0 means that the clients sell to dealer i ∈ D.
8Again, τi > 0, i ∈ D means that dealer i buys the asset.
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quadratic inventory holding costs that the dealer needs to pay after period 2. The remaining two terms

in (2) represent the revenue generated by trading with the clients and the money paid in the interdealer

market, respectively. We assume that in period 1, dealers quote a competitive price, p1, to all their clients

such that they are indifferent between trading or not trading in the first round. In period 2, when dealers

trade among themselves, dealers maximize the expectation of the expression in (2).

6.2 Equilibrium

An equilibrium in this model consists of a pricing rule for each dealer that specifies a price for a given quantity

that the clients demand as well as a demand schedule for each dealer such that the interdealer market clears

in period 2. Moreover, dealers behave competitively when facing clients and maximize expected utility in

the interdealer market.

We conjecture that dealer i ∈ D uses a linear demand schedule τi(xi, p2) : R2 → R with

τ(xi, p2) := ap2 + bxi, (3)

where a, b ∈ R. Market clearing gives the price in the interdealer market as a function of the quantities

traded between dealers and their clients:

p2(x1, ..., xN ) =
−b
aN

N∑
i=1

xi.

If agent i ∈ D is strategic in the interdealer market and conjectures strategies for all the other dealers

j 6= i to be as in (3), then market clearing implies a residual inverse demand function such that:

λ :=
∂

∂τi
p2 =

−1

a(N − 1)
. (4)

Maximizing the expression in (2) for a given price p2 with respect to τi and calculating the corresponding

the first-order condition gives the necessary condition9

τi =
γ

γ + λ
xi −

1

γ + λ
p2. (5)

Now (3), (4) and (5) imply

9By calculating the second derivative, one can see that this condition is also sufficient.
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a = − 1

γ − 1
a(N−1)

(6)

and

b =
γ

γ − 1
a(N−1)

. (7)

Comparing (6) and (7) gives

a = − b
γ
. (8)

Using the last result and (7) gives

b =
N − 2

N − 1
. (9)

It follows that if we define the average client demand x̄ =
∑N
i=1 xi
N , then we have

p2 = γx̄ (10)

τi =
N − 2

N − 1
(xi − x̄) (11)

We see that the dealer’s trade in the inter-dealer market does not depend on her risk-aversion, but only

on how different her clients’ trades are from the average trade. Instead, the price level in the interdealer

market is equal to the average inventory held by dealers times their risk-aversion. The price fully reveals the

average inventory which is a sufficient statistic for all the dealers trades, given their own client demand.

To finish the characterization of the equilibrium, it remains to derive the prices that the dealers are

offering their clients. Dealers behave competitively and achieve the same expected utility when trading with

their clients as in the hypothetical scenario in which they do not trade with the clients (but nevertheless

observe the clients’ demand and thus make inferences about aggregate orderflow). Fixing a price p1,i and

a quantity xi, taking expectations of the utility defined in (2) as well as using the characterizations of the

price p2 and demand schedule τ in (3), (8) and (9), one gets
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E
(
Udi (xi, p1,i, p2, τi)

∣∣ clients demand xi, trade happens
)

= E
(
−(τi − xi)2 γ

2 + xip1,i − p2τi
)

for all i ∈ D. If dealer i does not trade, but all other dealers do trade with their clients, dealer i expects

the market price

pnotrade2 (x1, ..., xN ) =
−b
aN

(

N∑
j=1,j 6=i

xj) = γ(x̄− xi
N

), (12)

since dealer i optimally uses the demand schedule

τnotrade(pnotrade2 ) := apnotrade2 =
N − 2

N − 1
(
xi
N
− x̄),

while all other dealers use the demand schedule given by (3). Market clearing now implies (12). Analo-

gously to the case in which the dealer trades with the clients, one gets

E
(
Udi (xi, p1,i, p2, τi)

∣∣ clients demand xi, no trade happens
)

= E
(
−(τnotradei )2 γ

2 − p
notrade
2 τnotradei

)
Requiring that the utility that the dealer derives from trading and not trading, respectively, are the same

and solving for p1,i gives

p1,i = E

γ∑N
j=1 xj(N − 2) + xi

(N − 1)N

∣∣ clients demand xi

 . (13)

Using the distributional assumption on order flow (1) and the conditional expectation of a multivariate

normal distribution gives

p1,i = γ
(N − 2) 1′Σ−1

i,i Σ∗,i + 1

(N − 1)N
xi, (14)

where 1 is an N -dimensional column vector and Σ∗,i refers to the i-th column of the covariance matrix

Σ. Using the expression p2 = −b/(aN)
∑N
j=1 xj , one has
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E
[
p2

∣∣ customer demands xi

]
=

γ

N
1′Σ−1

i,i Σ∗,ixi. (15)

Now, (14) and (15) imply

p1,i =
(N − 2)

(N − 1)
E
[
p2

∣∣ customer demands xi

]
+ γ

xi
(N − 1)N

. (16)

6.3 Client markups, dealer informedness, and price impact

One may define the markup as the difference between the quoted price (adjusted for the direction of the

trade) and the quote of an uniformed dealer of zero (since p2 = 0 in expectation):

mi := (χbuy − χsell)
(

(N − 2)

(N − 1)
E
[
p2

∣∣ net orderflow = xi

]
+ γ

xi
N(N − 1)

)
, (17)

where χbuy = 1 if a client buys, χbuy = 0 if a client sells and χsell = 1− χbuy. As the number of dealers

gets large, we get

mi → (χbuy − χsell)E
[
p2

∣∣ net orderflow = xi

]
. (18)

A regression of dealer i’s markups on the realized second-period prices (adjusted for the direction of the

trade), i.e.

mi = β0 + β(χbuy − χsell)p2 + ε, (19)

is similar to the regression

E
[
p2

∣∣ net orderflow = xi

]
= β′0 + β′p2 + ε′. (20)

We get from (19) to (20) using the limit in (18) and dropping the sign of the trade χbuy−χsell from both

variables in the regression (19). In (20) we regress dealer i’s conditional expectations of p2 on the realized

values of p2 and we know that

β′
p→ R2

i

as the sample becomes large, where R2
i is the r-squared statistic from the regression
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p2 = β0 + β1xi + ε,

i.e. a regression of the price p2 on dealer i’s order imbalance xi.

If we run the regression described in (19), where mi is replaced by the empirical estimates of the dealer’s

markups, and (χbuy − χsell)p2 refers to the price impact measures, we expect that β̂ is larger if R2
i is larger.

We can obtain an estimate of R2
i from regressions of future price changes on the dealers’ order imbalances.10

6.4 Endogenous dealer choice

We add two features to the model to capture the endogenous client-dealer choice.

First, we introduce an “arbitrageur” who is endowed with superior information about futures prices. The

arbitrageur has access to the interdealer market and can request a quote from one dealer in the first trading

round. In the first period, the arbitrageur and other customers of the contacted dealer have to pay the same

price.

Second, dealers will have a different reservation utility, when giving quotes to their customers and may

refuse to offer a quote if no quote can be found at which they break even.

All other assumptions on dealers and their clients will remain the same as before.

The arbitrageur can send a request for quote (RFQ) to one dealer in the first period, specifying some

(exogenously given) quantity α > 0 that the arbitrageur wants to trade. The RFQ does not specify whether

the arbitrageur wants to buy or sell. Thus, the dealer responds with a bid-ask spread. After the arbitrageur

has communicated whether she wants to buy or sell, the dealer charges the same price to the arbitrageur

and to the uninformed customers. The uninformed customers are, as before, happy to trade at any price.

Conditional on having traded with a dealer in period 1, the arbitrageur offloads the entire quantity α in the

interdealer market in period 2.

In the interdealer market, the optimal demand schedule of a dealer who only traded with uninformed

customers is still determined by (5). If, additionally, dealer i traded with the arbitrageur, then her inventory

in period 2 is either xi − α or xi + α, depending on whether the informed trader bought or sold. Thus, the

first order condition for characterizing the maximum of (2) using the different initial inventory implies

10Since E(p2) = 0, we get from the law of iterated expectations that β′0
p→ 0 in large samples. Using this limit and mutiplying

both sides in (20) by χbuy −χsell gives β0
p→ 0 and β

p→ β′ in large samples, since χbuy −χsell is uncorrelated with the error in
(20) (due to symmetry of the normal distribution, signed order flow predicts signed price changes. The sign has no additional

predictive power). We thus get β
p→ R2

i in large samples.
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τ bi :=
γ(xi + α)− p2

γ + λ
(21)

if the arbitrageur bought in period 1 and

τsi :=
γ(xi − α)− p2

γ + λ
(22)

if the arbitrageur sold.

Since the demand of the arbitrageur is price insensitive, the price impact λ is still given by (4), where

a, and b are defined in (8) and (9). If the arbitrageur decides to trade with dealer i, the market clearing

condition in the interdealer market becomes

0 =


∑N
j 6=i τj + τ bi − α if arbitrageur bought in period 1,∑N
j 6=i τj + τsi + α if arbitrageur sold in period 1.

(23)

In equation (23), the quantity α enters with a negative sign if the arbitrageur bought in period 1, since,

in that case, the arbitrageur will sell the same quantity in period 2. Solving (23) for p2, using , (4), (5), (8),

(9), (21) and (22) gives

pb2 :=
γ
∑N
j=1 xj

N
− γα

N(N − 2)
(24)

if the arbitrageur bought in period and

ps2 :=
γ
∑N
j=1 xj

N
+

γα

N(N − 2)
(25)

if the arbitrageur sold in period 1.

The prices a dealer quotes when contacted by the arbitrageur are determined as follows.

• ask price: At the ask, the dealer is indifferent between selling α to the arbitrageur and trading with

the uninformed customers and not trading in period 1, assuming that the arbitrageur will the buy α

from another dealer, that the uninformed customers will also trade with another dealer and that the

price in the interdealer market is higher than the ask price.

• bid price: At the bid, the dealer is indifferent between buying α from the arbitrageur and trading with

the uninformed customers and not trading in period 1, assuming that the arbitrageur will sell α to
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another dealer, that the uninformed customers will also trade with another dealer, and that the price

in the interdealer market is lower than the bid price.

Formally, this means

0 = E
[(
−(τ bi − xi − α)2 · γ/2 + (xi + α)× ask − pb2τi

)
−
(
−(τnotrade)2 · γ/2− p2bτnotrade

) ∣∣ xi, p2 > ask

]

Solving the last equation for ask gives

ask =
N

N + 1
E
[
pb2
∣∣ p2 > ask, xi

]
+

γxi
(N − 1)2

. (26)

Analogously, one gets

bid =
N

N + 1
E
[
ps2
∣∣ p2 < bid, xi

]
+

γxi
(N − 1)2

. (27)

For the sake of clarity, we now neglect any influence of the dealer’s uninformed orderflow xi on markups,

i.e. we consider the limiting case for σi → 0 and α→ 0. Then the arbitrageur, who knows p2 will buy from

the dealer if and only if

p2 >
N

N + 1
E
[
p2

∣∣ xi, p2 > ask
]
,

where p2 is again determined as in Section 6.2.

Analogously, the arbitrageur will sell the asset to the dealer if and only if

p2 <
N

N + 1
E
[
ps2
∣∣ xi, p2 < bid

]
.

The ask price converges in probability to N
N+1p2 if (corr(xi, p2))2 → 1. Thus, the probability that the

arbitrageur buys if p2 > 0 goes to one if (corr(xi, p2))2 → 1.

Analogously, one can show that the probability that the arbitrageur will sell to the dealer goes to one

if p2 < 0 and (corr(xi, p2))2 → 1. Since p2 6= 0 almost surely, the arbitrageur will trade with a probability

that is arbitrarily close to 1 if contacting a sufficiently informed dealer.

On the other hand, consider the case in which corr(xi, p2) = 0. Then, it can be shown that the dealer will

charge a fixed positive bid-ask spread with midpoint zero and the arbitrageur will not trade in the (positive-
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probability) event that p2 falls into that spread. Proposition B.1 formalizes and proves these statements.

6.5 Discussion

The model presented above describes a mechanism according to which dealers may include expectations

about future prices because the dealers’ reservation price, i.e. the price at which dealers are indifferent

between trading and not trading, changes.

In actual markets, dealers may not necessarily quote their own reservation price, but may add a markup

that depends on the clients bargaining power. The model does not analyse those additional markups.

However, in empirical analyses it may be necessary to control for determinants of those markups in order to

determine the proper effect of expected price changes on dealers’ quotes.

7 Conclusion

Extending previous work on informed trading in FX markets, we document heterogeneity in the traders’

informedness, as measured by their price impact. We also show that informedness is persistent, i.e. traders

with a high price impact in one period are likely to have a high price impact in another period. Moreover,

we present evidence suggesting that informed traders are more likely to trade with informed dealers. These

findings are consistent with recent theory papers (Lee and Wang (2019)), Glode and Opp (2019)) that argue

that non-anonymous OTC markets with a two-tiered market structure with ”intermediation chains” may help

alleviate asymmetric information frictions. Our findings are also consistent with Evans and Lyons (2002)

and suggest that information frictions are also prevalent in a large market such as the Foreign-Exchange

market, even though its underlying fundamentals are traditionally largely thought of as driven by systematic

macro-economic risks. This has implications for the regulation of financial markets. If OTC markets with

their two-tiered structure exist largely due to the rent-seeking behavior of a small set of large dealers who

find ways to stymie competition, then regulators should mandate trading on exchanges, which would reduce

excessive markups and, by lowering trading costs, lead to more efficient trade.11 If, on the other hand, OTC

markets help alleviate significant financial frictions, then it is less clear that all assets should be traded on

anonymous centralized exchanges. The results in this paper offer some support in favor of this second view,

and thus suggest that caution may be warranted when regulating financial market structure.

11Convincing evidence that channeling trades of smaller less sophisticated traders onto electronic trading platforms indeed
leads to less price dispersion and more competitive prices is given in Hau et al. (2019). See also Duffie (2012).
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Appendix

A Additional description of the data

Figure A.1: Histogram of maturity dates. This figure shows the frequency with which contracts of
the maturities with values on the horizontal axis are traded. The sample period is May 2018 to April 2019.
Maturity is expressed in days.
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Table A.1: Trades in the C2C market. This table shows the number of trades that are executed
between the dealers’ customers directly in the sample period from May 2018 to April 2019. Stars signal that
values have been omitted due to confidentiality concerns.

Non-financial Fund Ins. & Pen. Central Bank Government Empty

Non-financial 7,115

Fund 247,269 165,206

Insurance & Pension 312 991 8

Central Bank 0 0 0 0

Government 279 509 7 0 0

Empty 14,351 125,155 891 98 92 *
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Table A.2: Average notional in the C2C market. This table shows the average notional in EUR of
trades that are executed between the dealers’ customers directly in the sample period from May 2018 to
April 2019.

Non-financial Fund Ins. & Pen. Central Bank Government Empty

Non-financial 892,935

Fund 125,273 3,454,508

Insurance & Pension 333,659 6,798,043 44,725,209

Central Bank 0 0 0 0

Government 11,874,660 4,830,630 10,092,969 0 0

Empty 6,711,257 573,142 67,393,467 25,702,818 110,600,000 34,234

Table A.3: Average notional and number of trades in the D2D market. This table shows the
number of trades and the average notional in EUR of trades that are executed between the dealers’ customers
directly in the sample period from May 2018 to April 2019. Stars signal that values have been omitted due
to confidentiality concerns.

number of trades average notional volume

G16 Bank G16 Bank

G16 995,490 98,028,476

Bank 383,859 * 90,904,190 40,811,433
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Figure A.2: Markups. This figure shows the average markups across all traders over the sample period.
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Figure A.3: Histogram of average trades per day. This figure shows the distribution of the trader’s
average number of trades per day conditional on trading. All traders that trade 12 time or more on average
per day when trading have been allocated to the last group, i.e. to the 11-trades group.
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Figure A.4: Persistence of price impact and the size of markups. In Panel A, a group’s average
1-minute price impact in the second half of the sample is plotted against its 1-minute price impact in the
first half of the sample. In Panel B, a group’s average 1-day price impact in the second half of the sample is
plotted against its 1-day price impact in the first half of the sample. Larger circles correspond to groups in
which trades are associated with higher markups on average in the first half of the sample.
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Figure A.5: Persistence of price impact and the size of total notional traded. In both panels, a
group’s average 1-day price impact in the second half of the sample is plotted against its 1-day price impact
in the first half of the sample. In Panel A, only HFT market participants are considered and in B, only
non-HFT market participants are considered. Larger circles correspond to groups in which traders generate
a higher total notional volume (EUR) in the first half of the sample.
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Figure A.6: Persistence of 1-minute price impact and the size of total notional traded for
HFT and non-HFT market participants. In both panels, a group’s average 1-minute price impact in
the second half of the sample is plotted against its 1-minute price impact in the first half of the sample.
In Panel A, only HFT market participants are considered and in B, only non-HFT market participants are
considered. Larger circles correspond to groups in which traders generate a higher total notional volume
(EUR) in the first half of the sample.

Figure A.8: Histogram of the dealers’ informedness.
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Figure A.7: Persistence of 1-day price impact and the size of total notional traded for HFT
and non-HFT market participants. This figure a group’s average 1-minute price impact in the second
half of the sample against its 1-minute price impact in the first half of the sample. Larger dots correspond
to groups in which traders generate a higher notional volume (EUR) per trade in the first half of the sample.

Table A.4: Permanent price impact of traders. This table shows the average changes in the benchmark
rates for the 1-minute and the 1-day horizon, the corresponding standard deviations as well as t-stats for
each trader type. The standard deviations refer to single observations as opposed to the mean estimates.

1-day impact 1-minute impact

trader type mean std. dev. t-stat mean std. dev. t-stat

CENTRAL BANK -0.0000133 0.0048531 -0.21 0.00000326 0.0002118 1.16

EMPTY 0.0000224 0.0046875 3.39 0.00000106 0.0002322 3.23

FUND 0.0000189 0.0046789 4.99 0.0000011 0.0002296 5.91

GOVERNMENT -0.00000701 0.004862 -0.24 0.00000564 0.0002611 3.57

INSURANCE & PENSION -0.0000763 0.0049035 -4.71 0.00000216 0.0002271 2.88

NON-FINANCIAL 0.0001174 0.0048899 19.03 0.00000133 0.0002408 4.38
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Figure A.9: Informedness and sensitivity with respect to price impact. After having sorted trades
first into quintiles based on dealer informedness and then having sorted trades within each quintile into
two groups based on 1-day price impact, this figure shows the difference in the average markups of the
group with a high 1-day price impact and the group with a low 1-day price impact for the 5 quintiles. The
difference in markups is called slope. In Panel B, After having sorted trades first into terciles based on
dealer informedness and then having sorted trades within each tercile into 10 groups based number of trades
(holding the number roughly constant within each group), this figure shows average markups for each group
an the average 1-day price impact of the trades of each group. Red dots (informed dealers) refer to trades
where the dealer informedness is in the highest tercile, while blue dots (uninformed dealers) refer to trades
where the dealer informedness is in the lowest tercile.

Table A.5: Price impact of dealers’ clients. This table shows the average clients price impact for the
1-minute and the 1-day horizon as well as the corresponding standard deviations aggregated for each dealer
type.

1-day impact 1-minute impact

trader type mean std. dev. t-stat mean std. dev. t-stat

BANK 0.0000706 0.004668 12.54 0.0000011 0.0002506 3.74

G16 0.0000278 0.004762 8.45 0.0000013 0.0002267 8.03
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Table A.6: Markups for traders. This table shows the average markup for each trader type as well as
the corresponding standard deviations. Stars indicate that values are not reported due to confidentiality
concerns.

trader type mean standard deviation

CENTRAL BANK * 0.0009116

EMPTY 0.0001678 0.0042364

FUND 0.0000754 0.0020724

GOVERNMENT 0.0001240 0.0014073

INSURANCE & PENSION 0.0000091 0.0015384

NON-FINANCIAL 0.0003284 0.0055631

Table A.7: Markups from dealers. This table shows the average markup for each dealer type as well as
the corresponding standard deviations.

trader type mean standard deviation

BANK 0.000317 0.004075

G16 0.000092 0.003378

Table A.8: Informedness and price impact. This table shows the average price impact of clients whose
dealers have informedness above the median compared to analogous statistics when dealers’ informedness
is below the median. Informedness is defined as in Section 4. Besides average 1-day and 1-minute price
impact, the table shows the total number of trades executed by each group of dealers as well as the number
of dealers that belongs to each group.

1-day price impact 1-minute impact trades number of dealers

uninformed 0.000036600 0.000000538 1447095 34

informed 0.000041900 0.000001960 1359241 108
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Table A.9: Connectedness in D2D market and price impact. This table shows the average price
impact of clients whose dealers have more connections in the D2D market than the median compared to
analogous statistics when dealers have fewer connections than the median. Besides average 1-day and 1-
minute price impact, the table shows the total number of trades executed by each group of dealers as well
as the number of dealers that belongs to each group.

1-day price impact 1-minute impact trades number of dealers

unconnected .000039 0.0000013200 1,508,747 125

connected .000044 0.0000009440 1,237,597 7

Table A.10: Connectedness in D2C market and price impact. This table shows the average price
impact of clients whose dealers have more connections in the D2C market than the median compared to
analogous statistics when dealers have fewer connections than the median. Besides average 1-day and 1-
minute price impact, the table shows the total number of trades executed by each group of dealers as well
as the number of dealers that belongs to each group.

1-day price impact 1-minute impact trades number of dealers

unconnected 0.000048 0.00000117 1,595,402 137

connected .0000276 0.00000131 1,210,934 5
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Table A.11: Probability of being an informed dealer. We run the regression

R2 = BX + ε,
where R2 is the informedness measure described in the text. This table shows the coefficient estimates B
for various explanatory variables X as well as robust standard errors. In columns 1 to 3 we focus on dealers
executing more than 0.5% of the notional volume of the entire D2C market. In columns 4-6 we focus on
dealers executing more than 2.5% of the notional volume (EUR) of the entire D2C market.

> 0.5% notional volume > 2.5% notional volume

(1) (2) (3) (4) (5) (6)

total notional traded notional -0.96 0.04 -0.60 -2.90***

(1.05) (1.60) (0.91) (0.65)

# trades dealer -0.10** -0.01 -0.12** -0.22***

(0.05) (0.07) (0.04) (0.05)

D2D counterparties -0.00

(0.00)

D2C counterparties -0.00

(0.00)

Constant 0.00** 0.00*** 0.01** 0.00* 0.00*** 0.01***

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

N 20.00 20.00 20.00 11.00 11.00 11.00

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.12: Markups and price impact in different subsamples with fixed effects Using dealer-
client fixed effects, we run the regression

markupit = BX + ε,
where εit is an error term, X are explanatory variables specified in the table and markupit is the markup
that trader i has to pay at time t. We report coefficients B and standard errors that are clustered at the
dealer level. In column 1, we focus on HFT market participans, and in column 2 we focus on non-HFT
market participants. In column 3 we exclude all traders labelled as neg-PI traders. In column 4 we focus
only on those traders. In column 5 we focus on the trades for which volatility is below the median across
all trades and in column 6 we focus on trades for which volatility is above the median across all trades. We
excluded all trades with markups below -2% and above 3%. Order imbalance has been divided by 106.

(1) (2) (3) (4) (5) (6)

HFT non-HFT no low-PI low-PI low vol high vol

real. 1-day impact × info dummy 0.006 0.011** 0.008** 0.019*** 0.008** 0.011*

(0.004) (0.005) (0.004) (0.007) (0.003) (0.006)

realized 1-day impact 0.009*** 0.009*** 0.009*** 0.007*** 0.008*** 0.009***

(0.002) (0.002) (0.002) (0.001) (0.002) (0.002)

realized 1-minute impact min 0.150*** 0.061** 0.083*** 0.148* 0.103** 0.085***

(0.049) (0.029) (0.026) (0.075) (0.051) (0.029)

market conditions:

volatility 1.126 0.444* 0.870** 0.107 0.553 0.685

(0.699) (0.235) (0.409) (0.434) (0.723) (0.545)

smart average 1-day impact 0.004 -0.000 0.003 -0.005 0.007 -0.004

(0.009) (0.007) (0.006) (0.012) (0.005) (0.011)

varying trader characteristics:

log(traders’ monthly counterparties) 0.014 -0.027** -0.005 -0.077*** 0.002 -0.017

(0.046) (0.011) (0.022) (0.028) (0.028) (0.018)

log(trader’s monthly trades) 0.032** 0.023** 0.032*** -0.008 0.011 0.040***

(0.012) (0.010) (0.007) (0.042) (0.012) (0.011)

(To be continued)
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Table A.12-Continued.

(1) (2) (3) (4) (5) (6)

HFT non-HFT no low-PI low-PI low vol high vol

varying dealer characteristics:

dealer’s signed OI 0.048 0.020 0.038 0.015 0.044 0.026

(0.041) (0.024) (0.034) (0.026) (0.040) (0.025)

Constant -0.000 0.000*** 0.000 0.000 0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N 961931 1780807 2286548 456190 1384874 1357864

p < 0.05, ** p < 0.01, *** p < 0.001
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Table A.13: Probability of trading with connected dealers. We run the regression

connected = BX + ε,
where εit is an error term, X are explanatory variables specified in the table and connected is the the
connectedness dummy discussed in Section 4. We report coefficients B and standard errors that are clustered
at the trader level. The dataset includes D2C trades. We excluded all trades with markups below -2% and
above 3%.

excluding HFT HFT only

(1) (2) (3) (4) (5) (6)

avg. 1-day impact -2.26 -2.11 -3.09 18.18 19.86 -11.90

(3.57) (3.56) (3.41) (73.43) (72.51) (70.97)

avg. 1-min impact 33.42 -29.67 320.21 -53.76

(77.69) (73.73) (2227.70) (2190.89)

realized 1-day impact 0.03 0.03 -0.09 -0.23*

(0.05) (0.05) (0.13) (0.12)

realized 1-min impact -2.38** -2.24** -0.28 0.28

(1.04) (1.04) (1.85) (2.07)

log(counterparties) 68.15*** -69.73

(9.05) (50.16)

log(monthly trades) -48.87*** 115.78***

(6.00) (44.19)

volatility -929.89*** 65.94

(120.59) (597.69)

Constant 0.42*** 0.42*** 0.58*** 0.51*** 0.52*** -0.21

(0.01) (0.01) (0.01) (0.07) (0.07) (0.31)

* p < 0.10, ** p < 0.05, *** p < 0.01

B Technical details

This appendix contains technical results related to the model extension in section 6.4. First, it is shown that

there are unique solutions to the fixed-point problems in (26) and (27). To this end, a result on truncated

normal random variables is useful.
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Definition 1. A truncated normal random variable with parameters µ and σ and threshold a has the

distribution of a normal random variable Y with mean µ and variance σ2 conditional on Y > a. Thus, X

has has the density

dP({X < x})
dx

=


1
σφ( x−µσ )

1−Φ( x−µσ )
if x ≥ a,

0 if x < a,

(B.1)

where φ denotes the density of a standard normal random variable and Φ denotes the distribution function

of a standard normal random variable.

Lemma 1. Let X be a truncated normal random variable with parameters µ, σ and threshold a. Let

κ :=
a− µ
σ

. (B.2)

Then,

E(X) = µ+ σλ (κ) (B.3)

and

V(X) = σ2
[
1− λ(κ)(λ(κ)− κ)

]
, (B.4)

where λ denotes the hazard rate function of a standard normal random variable, i.e.

λ(x) :=
φ(x)

1− Φ(x)
. (B.5)

Proof. Using the density in (B.1), the moment generating function of X is given by
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M(t) := E
(
etX
)

=
1

1− Φ
(
a−µ
σ

) 1

σ
√

2π

∫ ∞
a

etse−
(s−µ)2

2σ2 ds

=
1

1− Φ
(
a−µ
σ

) 1

σ
√

2π
eµt+σ

2t2/2

∫ ∞
a

e−
(s−µ−σ2t)2

2σ2 ds

= eµt+σ
2t2/2

1− Φ
(
a−µ
σ − σt

)
1− Φ

(
a−µ
σ

)
The first two derivatives are given by

M ′(t) = (µ+ σ2t)eµt+σ
2t2/2

1− Φ
(
a−µ
σ − σt

)
1− Φ

(
a−µ
σ

) + eµt+σ
2t2/2

σφ
(
a−µ
σ − σt

)
1− Φ

(
a−µ
σ

)
and (using φ′(x) = −xφ(x))

M ′′(t) =
(
σ2 + (µ+ σ2t)2

)
eµt+σ

2t2/2
1− Φ

(
a−µ
σ − σt

)
1− Φ

(
a−µ
σ

) + 2(µ+ σ2t)eµt+σ
2t2/2

σφ
(
a−µ
σ − σt

)
1− Φ

(
a−µ
σ

)
+σ2

(
a− µ
σ
− σt

)
eµt+σ

2t2/2
φ
(
a−µ
σ − σt

)
1− Φ

(
a−µ
σ

) .
Evaluating those derivatives at zero gives

E(X) = M ′(0) = µ+ σ
φ
(
a−µ
σ

)
1− Φ

(
a−µ
σ

)
and

E(X2) = M ′′(0) = µ2 + σ2 + 2µσ
φ
(
a−µ
σ

)
1− Φ

(
a−µ
σ

) + σ2

(
a− µ
σ

) φ
(
a−µ
σ

)
1− Φ

(
a−µ
σ

) .
Using (B.2), (B.5) and V(X) = E(X2)− E(X)2, one now gets (B.4).

The results in Lemma 1 can be used to show the existence and uniqueness of a bid ask spread that a
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dealer is willing to quote once contacted by an arbitrageur.

Lemma 2. For any given customer demand xi and a given covariance matrix Σ of the demanded quantities

xj, j = 1, ..., N , there are a unique ask ∈ R and a unique bid ∈ R such that (26) and (27) hold.

Proof. This proof focuses on a solution to (26), since the corresponding statement for (27) is shown analo-

gously. For a fixed demand of uninformed customers xi, consider the function f : R→ R defined by

f(t) :=
N

N + 1
E
[
p2|xi, p2 > t

]
+

γxi
(N − 1)2

such that (26) can be rewritten as f(ask) = ask. We also have

E
[
p2|xi, p2 > t

]
=

∫∞
t
sρ(s) ds∫∞

t
ρ(s) ds

,

where ρ is the density of p2 with respect to the Lebesgue measure of p2 conditional on the realization of

x2. Due to (24), the joint normality and analogously to the reasoning in the text before (15), this means

(by the normal projection theorem) that µ is the density of a normal random variable with mean

µ :=
γ

N
1′Σ−1

i,i Σ∗,ixi −
γα

N(N − 2)
(B.6)

and variance

σ2 :=
γ2

N2

1′Σ1−
(
1′Σ∗,i

)2
Σi,i

 . (B.7)

By (B.3) in Lemma 1, we have

E
(
p2|xi, p2 > K

)
= µ+ σλ

(
K − µ
σ

)
. (B.8)

By the Banach Fixed Point Theorem, there is a unique ask ∈ R with ask = f(ask) if |f ′(x)| ≤ M with

0 < M < 1 for all x ∈ R. The latter is shown in two steps:

1. The hazard rate function λ ist strictly increasing, i.e. λ′ > 0.

2. The hazard rate function λ satisfies λ′ < 1

Then, λ′(x) ∈ (0, 1) implies f ′(x) ∈ (0, N
N+1 ). Thus, the claim follows by the Banach Fixed-Point

Theorem.
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To prove the first step, differentiate the hazard rate function. Using the facts that φ′(x) = −xφ(x) (which

can be verified by simple computation) and Φ′(x) = φ(x) (which holds by definition), one gets

λ′(x) =
φ′(x)(1− Φ(x)) + Φ′(x)φ(x)

(1− Φ′(x))2

= −x φ(x)

1− Φ(x)
+

(
φ(x)

1− Φ(x)

)2

= λ(x)(λ(x)− x). (B.9)

Applying the formula (B.3) for the expectation of truncated normal random variables to a standard

normal random variable X, one gets

λ(x) = E(X|X > x) > x.

Since by (B.5) one has λ > 0, it now follows from (B.9) that λ′(x) > 0 for all x ∈ R.

To prove the second step, note that the expression on the left-hand side of (B.4) must be positive for any

κ ∈ R. This implies that

λ(x)(λ(x)− x) < 1

for all x ∈ R. Now it follows with (B.9) that λ′(x) < 1 for x ∈ R.

In order to characterize the bid ask spread for different levels of dealer informedness, the following two

auxiliary results are useful.

Lemma 3. The expression σλ
(
x
σ

)
, where λ is given by (B.5), is strictly monotone increasing in σ for all

x ∈ R and all σ > 0.

Proof. Let x ∈ R and 0 < σ1 < σ2. As shown in the proof of Lemma 2, one has 0 < λ(y) > y and λ′(y) < 1

for all y ∈ R. From these two fact it follows that the line l :
[

0, xσ1

)
→ R with

l(y) := y
λ(x/σ1)

x/σ1

lies strictly below λ on its domain. Using y = x/σ2, this implies
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σ1

σ2
λ(x/σ1) < λ(x/σ2).

Multiplying both sides by σ2 gives

σ1λ

(
x

σ1

)
< σ2λ

(
x

σ2

)
.

We can now prove the claim that the arbitrageur is almost always able to trade with the dealer if the

dealer is sufficiently informed. Moreover, the following results states the resulting bid-ask spreads for both

informed and uninformed dealers and provides an expression for the probability with which an arbitrageur is

able to trade with a completely uninformed dealer given that the dealer’s order flow from uninformed clients

is negligible.

Proposition B.1. Let

R2 :=

(
1′Σ∗,i

)2
Σi,i1′Σ1

.

be the squared correlation between dealer i’s order flow from uninformed customers and the future price

p2, let Σi,i → 0 and let α→ 0. Then,

• As R2 → 1, both the ask (bid) of dealer i converges in probability to N
N+1p2 if p2 > 0 (p2 < 0) and to

zero otherwise and the probability that the arbitrageur trades with the dealer goes to 1.

• If R2 = 0, one has

ask

γ
√

1′Σ1/N
= S

and

bid

γ
√

1′Σ1/N
= −S,

where S satisfies the fixed-point equation

S :=
N

N + 1
λ(S),
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where λ is given by (B.5). In this case, the probability that the arbitrageur trades with the dealer is

strictly below 1.

In the following, the first and second bullet point are proved separately. Due to symmetry, only the

expressions for the limit of the ask price will be derived explicitly.

Step1: Proof of the first bullet point.

With the ask price given by (26) and using (B.6), (B.7) and (B.8) from the proof of Lemma 2, one has

ask
p→ N

N + 1
E
[
p2

∣∣ p2 > ask, xi

]
=

N

N + 1

(
µ+ σλ

(
ask − µ

σ

))
(B.10)

as Σi,i → 0. This convergence can be shown using Chebyshev’s inequality. In the following, the limit in

(B.10) will be examined for R2 → 1. First, R2 → 1 and (B.7) imply

σ → 0. (B.11)

Moreover, for σ > 0, it must always be the case that ask > N
N+1µ. Suppose that is not the case. Then

one would get the contradiction

N

N + 1
µ ≥ ask =

N

N + 1

(
µ+ σλ

(
ask − µ

σ

))
>

N

N + 1
µ.

Since, for any fixed µ > 0, the ask prices are bounded from below and are, by Lemma 3, strictly increasing

in σ, the prices must converge as σ → 0, holding µ fixed.

Note that 0 < λ′(x) < 1 implies that

max{λ(x)− x|x ≥ 0} = λ(0) =

√
2

π
. (B.12)

Suppose now, that limσ→0 ask ≥ µ. Then, using (B.12), one would obtain the contradiction

lim
σ→0

ask = lim
σ→0

N

N + 1

(
µ+ σλ

(
ask − µ

σ

))
≤ lim
σ→0

N

N + 1

(
µ+ σ

√
2

π
+ (ask − µ)

)
=

N

N + 1
lim
σ→0

ask.
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Thus,

lim
σ→0

ask < µ. (B.13)

Since for any x < µ and a standard normal random variable X, one has

lim
σ→0

λ

(
x− µ
σ

)
= lim
b→−∞

E(X|X > b) = 0,

it must be the case that

lim
σ→0

ask = lim
σ→0

N

N + 1

(
µ+ σλ

(
ask − µ

σ

))
=

N

N + 1
µ. (B.14)

Suppose now that µ < 0. Because ask − µ > − 1
N+1µ for any σ > 0 due to the above reasoning, one has

lim
σ→0

σλ

(
ask − µ

σ

)
→ ask − µ

because of (B.12). If now follows that the ask price has to satisfy

lim
σ→0

ask =
N

N + 1
(µ+ lim

σ→0
ask − µ),

i.e. limσ→0 ask = 0.

Since µ
p→ p2 as σ → 0 and α→ 0, where p2 is determined as in Section 6.2, the probability that ask < p2

if p2 > 0 goes to 1 as σ → 1. Analogously, the probability that bid > p2 if p2 < 0 goes to 1 as σ → 1. To

conclude, the probability that the arbitrageur trades with the dealer goes to 1 as σ → 1, since p2 > 0 or

p2 < 0 with probability 1.

Step2: Proof of the second bullet point.

As above, the limit in (B.10) is examined for R2 = 0. The last two conditions and (B.7) imply

σ →∞. (B.15)

Moreover, since R2 = 0, one always has µ = 0 as can be seen from (B.6), since 1′Σ−1
i,i Σ∗,i = 0 in this

case. Thus, (B.10) becomes

ask
p→ N

N + 1

(
σλ

(
ask − µ

σ

))
(B.16)
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Instead of looking at the behavior of the ask prices directly, we consider the expression

K :=
ask

σ
.

If the ask price satisfies (B.16), then K satisfies

K =
N

N + 1
λ(K). (B.17)

Since 0 < λ′(x) < 1 for all x ∈ R, a solution K to (B.17) exists and is unique, which can be shown using

the Banach Fixed-Point Theorem. Moreover, K > 0, since λ(x) > 0 for all x ∈ R.

The probability that p2 > ask is given by 1 − Φ(Kσ ), where K satisfies (B.17) and Φ denotes the

distribution function of a standard normal random variable. Since K > 0, this probability is less than

1
2 . Analogously, the probability that p2 < bid is less than 1

2 . Thus, the arbitrageur will trade with the

uninformed dealer with a probability of less than 1. One obtains the expressions for the bid and ask prices

in the statement of the proposition by using (B.7) to express σ in terms of the primitive parameters.

C The effect of measurement errors in the FX benchmark price

on regression coefficient estimates

While most data are generally affected by measurement errors, a potential measurement error in the bench-

mark price (e.g. due to noisy quotes from dealers in the TRTH database or imprecise timestamps in the

EMIR database) may pose a special problem since the benchmark price is used for both calculating price

impact and markups. This appendix has three goals:

1. It is explored how errors in the benchmark price of the transactions affect the coefficient estimates in

a regression of markups on price impact.

2. An argument is presented that, given the empirical results in the main text, the estimate of the impact

of 1-day price impact on markups has, under plausible conditions, an upward bias of no more than 1

% of the coefficient estimate.

3. It is shown that even if errors in the benchmark price are large, this effect does, under plausible

conditions, not affect estimates on how differently informed dealers respond to markups.
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A potential bias in coefficient estimates: To address the first of the above points, let t be the reported

time of a transaction that is observed in the dataset and let T be the point in time a fixed horizon after

the reported transaction (e.g. T − t is equal to one minute, one day, etc). Consider now the following five

random variables:

mo
t := observed FX benchmark price at time t,

m∗t := actual FX benchmark price at time t

mo
T := observed FX benchmark price at time T,

m∗T := actual FX benchmark price at time T,

P := price paid for the contract,

where the price of the contract is not affected by measurement errors. Moreover, let sign(trade) := 1 if

the trader buys and sign(trade) := −1 if the trader sells. With the definitions given above, we can define the

observed price impact, PIo, the true price impact, PI∗, the observed markup, MUo, and the true markup,

MU∗ as follows.

PIo := sign(trade)(mo
T −mo

t ),

P I∗ := sign(trade)(m∗T −m∗t ),

MUo := sign(trade)(P −mo
t ),

MU∗ := sign(trade)(P −m∗t ).

Using these definitions, we can express the observed variables in terms of the corresponding actual

variables:

PIo = PI∗ + sign(trade)(m∗t −mo
t )︸ ︷︷ ︸

=:ε1

+ sign(trade)(mo
T −m∗T )︸ ︷︷ ︸

=:ε2

, (C.1)

MUo = MU∗ + sign(trade)(m∗t −mo
t )︸ ︷︷ ︸

=ε1

, (C.2)
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where we also defined the error terms ε1 and ε2 that affect the observations of price impact and markup.

Consider now the univariate regression model

MU∗ = β0 + β1PI
∗ + ε, (C.3)

where ε is an error term and β1 = Cov(MU∗,PI∗)
V ar(PI∗) . We can estimate β1 by replacing actual values by

observed values, but then, by (C.1) and (C.2), our estimate β̂1 becomes (in a large sample)

β̂1 =
Cov(MUo, P Io)

V ar(PIo)
=
Cov(MU∗ + ε1, P I

∗ + ε1 + ε2)

V ar(PI∗ + ε1 + ε2)
, (C.4)

which is not necessarily equal to the true β1.

Quantifying the bias: In the following, an upper bound for the bias derived above is stated for the case

in which errors are uncorrelated with the true markup. It is also assumed that errors are uncorrelated with

each other as well as with the true price impact. Let β̂minute1 and β̂day1 denote the estimates of the regression

coefficient β1 from (C.3), where PIo stands for the observed 1-minute price impact or for the 1-day price

impact, respectively. Note that the error ε1 that affects those estimates is the same for the case with the

1-day price impact as for the case with the 1-minute price impact. The coefficient estimates β̂1 for various

horizons are shown in Table C.1. As for the regressions in Section 4, trades by CCPs and central banks as

well as trades with extreme markups have been excluded from the regressions shown in Table C.1.
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Table C.1: Markups and price impact. This table shows coefficient estimates for an OLS regression
of markups on realized values of the price impact for various horizons. Standard errors are clustered on
the dealer level and shown in parentheses. Trades by central banks, CCPs as well as trades with markups
smaller than 2% or greater than 3% have been excluded.

(1) (2) (3) (4) (5) (6) (7) (8)

all non-HFT HFT all all all all all

1-min impact 0.081** 0.043 0.141*** 0.085*** 0.086**

(0.032) (0.029) (0.049) (0.032) (0.034)

30-min impact 0.035*** 0.026***

(0.008) (0.008)

1-day impact 0.016*** 0.016*** 0.006***

(0.002) (0.002) (0.002)

5-day impact 0.013*** 0.011***

(0.002) (0.001)

Constant 0.000*** 0.000*** 0.000** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

* p < 0.10, ** p < 0.05, *** p < 0.01

The estimates

If Cov(MU∗, P I∗) ≥ 0, we get from (C.4) and and the correlations assumed above that

V ar(ε1) ≤ β̂minute1 V ar(PIo). (C.5)

Looking at Table C.1, we have β̂minute1 ≈ 0.1. and β̂day1 ≈ 0.01. Using standard deviations of the ob-

served 1-minute price impact, PIo,minute, and 1-day priceimpact, PIo,day from Tables A.4 and A.5, we get

V ar(PIo,minute) ≈ (0.0002)2 and V ar(PIo,day) ≈ (0.005)2. Using these approximations, we get from (C.5)

that

V ar(ε1) / 4 · 10−10.

We also get
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Cov(PIo,day,MUo) = β̂day1 · V ar(PIo,day) ≈ 3 · 10−7.

and therefore, considering (C.4), that

β̂day1

βday1

=
Cov(Mo, P Io,day)

Cov(Mo, P Io,day)− V ar(ε1)

V ar(PIo,day)− V ar(ε1)− V ar(ε2)

V ar(PIo,day)

≤ Cov(Mo, P Io,day)

Cov(Mo, P Io,day)− V ar(ε1)

≈ 3 · 10−7

3 · 10−7 − 4 · 10−10
.

The potential upward bias can therefore only be in the order of magnitude of 0.1% of the original

coefficient estimate.

One can see in Table C.1 that the relationship between price impact and markups is very robust with

respect to the horizon. Moreover, comparing model 1, model 3 and model 5, the coefficient estimates

barely change, when including more variables. If the observations would be heavily affected by a common

measurement error, we would expect that estimates would change more, since the independent variables

would be heavily correlated. Only after including the 5-day price impact (model 6), the coefficient estimate

for the 1-day price impact changes, which is plausibly explained by the correlation between 1-day and 5-day

price changes.

Moreover, while 1-minute price impact is significantly related to the markups for non-HFT client, the

same is not true for HFT clients. Unsless the trades of HFT clients have on average a different error, this

suggests that the strong result for non-HFT clients is not driven by the error.

No upward bias for the estimate for the interaction term: Consider the linear regression model

MU∗ = β0 + β1PI
∗ + ε+ β2PI

∗1informed + ε, (C.6)

whith the same interpretion as (C.3) and 1informed = 1 if the trade happens with a dealer that is classified

as informed and 1informed = 0 otherwise. As the sample becomes large, one has

β̂2 = β̂informed1 − β̂uninformed1 ,
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where β̂informed1 and β̂uninformed1 are the estimates of β1 from running the regression in (C.3) for informed

dealers only and uninformed dealers only, respectively. Using the results from above and assuming that

V ar(ε1) as well as the variance of the price impact do not change across informed and uninformed dealers,

we have

β̂2 =
Cov(MI∗, P I∗| informed)− Cov(MI∗, P I∗| uninformed)

V ar(PIo)

as the sample becomes large, whereas the true coefficient satisfies

β2 =
Cov(MI∗, P I∗| informed)− Cov(MI∗, P I∗| uninformed)

V ar(PI∗)
.

Under the assumptions stated above, V ar(PIo) ≥ V ar(PI∗). Thus, the positive estimate of β2 may only

be biased towards zero but not upwards if the estimate is positive.
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